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Spectral Clustering on Multiple Manifolds
Yong Wang, Yuan Jiang, Yi Wu, and Zhi-Hua Zhou, Senior Member, IEEE

Abstract—Spectral clustering is a large family of grouping
methods which partition data using eigenvectors of an affin-
ity matrix derived from the data. Though spectral clustering
methods have been successfully applied to a large number of
challenging clustering scenarios, it is noteworthy that they will
fail when there are significant intersections among different
clusters. In this paper, based on the analysis that spectral
clustering methods are able to work well when the affinity values
of the points belonging to different clusters are relatively low, we
propose a new method, called SMMC (Spectral Multi-Manifold
Clustering), which is able to handle intersections. In our model,
the data are assumed to lie on or close to multiple smooth low-
dimensional manifolds, where some data manifolds are separated
but some are intersected. Then, local geometric information of
the sampled data is incorporated to construct a suitable affinity
matrix. Finally, spectral method is applied to this affinity matrix
to group the data. Extensive experiments on synthetic as well as
real data sets demonstrate the promising performance of SMMC.

Index Terms—Clustering, spectral clustering, manifold cluster-
ing, local tangent space.

I. INTRODUCTION

IN machine learning and pattern recognition, an important
research direction is to group internally “similar” objects

into the same cluster while “dissimilar” objects into different
clusters, which is known as cluster analysis [5].

Traditional central grouping techniques, e.g., K-means [9],
proceed by comparing all the data points to a small number of
cluster prototypes or centroids. A major disadvantage of these
methods is that they could not be used to separate clusters
which are quite elongated or nonlinearly separable.

During the past decade, spectral clustering methods (abbre-
viated as SC) [11, 12, 16, 23, 26] have emerged as a principled
relaxation of the NP-hard normalized cut clustering problem,
and have been successfully applied to a number of challenging
clustering scenarios. Essentially, spectral methods group data
by using eigenvectors of an affinity matrix which is derived
from pairwise similarities between points of the original data.

However, a critical issue is that the promising success of
spectral clustering relies on the situation that the samples are
generated from approximately well-separated clusters, where
each cluster can be considered as a connected component
to a certain extent [11, 23]. They will fail when there are
significant intersections among different clusters. The reason
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Fig. 1. Data points drawn from multiple manifolds where some data
manifolds are separated but some are intersected.

is that the performance of spectral clustering heavily relies on
the constructed undirected graph or the affinity matrix, while
different clusters near the intersections will easily be connected
by the undirected graph, and thus the affinity matrix will be
corrupted with poor pairwise affinity values and misleading
information will be diffused across different clusters [6]. Thus,
the way for extending the scope of spectral clustering to the
intersecting case is a challenging and interesting work. Note
that it is hard for any clustering method to give a reasonable
performance if there is no restriction on the distribution of
the samples. Therefore, in this paper, we focus our attention
on the clustering of unlabeled data observations that lie on
or close to multiple smooth low-dimensional manifolds, some
of which possibly intersecting with each other (see Figure 1).
This restriction is reasonable since a large number of recent
research efforts have shown that the perceptually meaningful
structure of many real-world data possibly resides on a low-
dimensional manifold [13–15, 18].

Another line of research which motivates us to extend
spectral clustering methods to group multiple manifolds with
possible intersections is manifold clustering [17, 24]. Manifold
clustering, which regards a cluster as a group of points
around a compact low-dimensional manifold, has been realized
as a reasonable and promising generalization of traditional
centroid-based clustering methods. Although this field is fairly
new, a considerable amount of work has recently been re-
ported. When different manifolds have different intrinsic di-
mensions and densities, we can divide the points into different
clusters according to both dimensionality and density, e.g.,
TPMM (Translation Poisson Mixture Model) [8]. However, it
becomes infeasible when different manifolds have the same
dimensionality and density. Thus, more effective methods are
required. When the samples can be well approximated by a
mixture of linear manifolds (linear or affine subspaces), a large
number of elegant linear manifold clustering methods can be
utilized for representing the linear manifolds and clustering
the data points. For example, GPCA (Generalized Principal
Component Analysis) [22] represents the underlying linear
manifolds by using a set of homogeneous polynomials, LSA
(Local Subspace Affinity) [25] computes an affinity for any
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pair of points based on principal subspace angles between
different linear manifolds, and SCC (Spectral Curvature Clus-
tering) [4] computes polar curvature for each fixed-size subset
of the data. Alternatively, K-planes [2, 3] addresses linear
manifold clustering by iterating between assigning data to
manifolds, and estimating a manifold to each cluster. However,
all the linear methods fail to deliver good performance in the
presence of nonlinear structures.

Since nonlinear methods can be naturally applied to linear
and/or nonlinear manifolds, more attention should be paid to
nonlinear manifold clustering methods. As far as we know, K-
manifolds [17], which starts by estimating geodesic distances
between points, is the first method to classify unorganized
data nearly lying on multiple intersecting nonlinear manifolds.
Unfortunately, this method is limited to deal with intersecting
manifolds since the estimation of geodesic distances will fail
when there are widely separated clusters. On the contrary, ex-
isting spectral clustering methods [11, 12, 16, 23, 26] are well-
suited to group samples generated from separated manifolds
but have difficulty in dealing with points near the intersections
of different manifolds. Therefore, the way of addressing the
problem of hybrid nonlinear manifold clustering [24], a more
general framework where some data manifolds are separated
but some are intersected, is an interesting research direction.

Recently, a “divide and conquer” method, named mum-
Cluster [24], has been proposed to deal with hybrid nonlinear
manifold clustering. MumCluster first divides the complicated
hybrid modeling into single manifolds and intersecting mani-
folds. Then, each intersecting manifold is further divided into
intersection areas and non-intersection areas. Finally, a more
faithful undirected graph is constructed to reveal different clus-
ters. Empirical studies have shown the effectiveness of mum-
Cluster, however, it is quite heuristic. Moreover, mumCluster
heavily relies on the correct local dimension estimation, which
will have difficulty when faced with noisy real-world data.

In this paper, we extend the scope of spectral clustering
methods to give a more principled method for the grouping
of multiple smooth low-dimensional manifolds. Our basic
idea is based on the analysis that spectral methods are able
to work well when the affinity values for pairwise points
belonging to different clusters are relatively low. However, in
traditional spectral clustering methods which are based on a
radial distance between the pairwise points, the affinity matrix
will be corrupted with poor affinity values, i.e., affinity value
between the pairwise points belonging to different clusters but
near the intersection is high. Thus, misleading information
will be diffused across different clusters and spectral methods
could not give reasonable performances [6]. Accordingly,
adaptations are required when the samples are lying on or
close to multiple smooth manifolds with possible intersections.
Fortunately, in this case, some natural geometric information
of the sampled data on the manifold can be exploited to
supervise the construction of suitable pairwise affinity values.
Our affinity definition, which is a function of both the proxim-
ity via Euclidean distance and the “similarity” between local
estimated tangent subspaces, will improve the reliability of the
affinity value between the pairwise points. Then, we can apply
spectral methods to achieve a better performance.

It is worthwhile to highlight several aspects of our contri-
butions here:

1. Though it is not a new finding that poor affinity matrix
leads to poor spectral clustering performance, as far as we
know, we are the first to relate spectral clustering to a classical
manifold learning method, i.e., LEM (Laplacian Eigenmaps)
[1], to explain its poor performance when there are significant
intersections among different clusters. Our analysis reveals that
the performance of spectral clustering relies on the constructed
affinity matrix, and spectral methods are able to work well
when the pairwise points belonging to different clusters have
a relatively low affinity value.

2. When the unlabeled data points are lying on or close
to multiple smooth low-dimensional manifolds, we take ad-
vantage of additional geometric information presented in the
sampled data to give a general framework and a concrete
criterion to construct the expected affinity matrix and then
find the correct clusters.

3. Our proposed method can be successfully applied to the
general case of manifold clustering. Specifically, it is able to
handle situations where the manifolds on which the data points
lie are (a) linear and/or nonlinear and (b) intersecting and/or
not intersecting.

The rest of this paper is organized as follows. Section
II gives a brief review and analysis of classical spectral
clustering. Section III presents the SMMC method. In Section
IV, we report on experiments. Finally, we conclude and raise
several future issues in Section V.

II. REVIEW AND ANALYSIS ON CLASSICAL SPECTRAL
CLUSTERING

Given a set of unlabeled data points X = {xi ∈ ℜD, i =
1, · · · , N}, the aim of cluster analysis is to assign these points
into k disjoint subsets such that data points belonging to
the same cluster are “similar” while data points belonging to
different clusters are “dissimilar”.

A. Brief Review on Classical Spectral Clustering

In spectral clustering, a neighborhood graph on the data
points is first constructed based on some criteria, such as the
fully connected graph or the K-nearest neighbor graph [23].
Then, a weighted affinity matrix W ∈ ℜN×N is defined,
whose (i,j) element, wij , reflects the similarity between xi

and xj . Specifically,

wij =
{

exp(−∥xi − xj∥2
/2σ2) i ̸= j,

0 i = j,
(1)

where ∥·∥ denotes the Euclidean norm. Given a neighborhood
graph with affinity matrix W , a simple but efficient clustering
criterion is the normalized cut (Ncut) [16] which is defined as

Ncut(X1, · · · , Xk) ∆=
1
2

∑k

i=1

W (Xi, X̄i)
vol(Xi)

(2)

where X1, · · · , Xk is a partition of X (X1 ∪ · · · ∪ Xk = X ,
Xi ∩Xj = ∅, i ̸= j and Xi ̸= ∅, i = 1, · · · , k), W (A, B) ∆=∑

xi∈A,xj∈B wij , vol(A) ∆=
∑

xi∈A,j∈{1,...,N} wij and Ā is
the complement of A. Noting that small values of W (Xi, X̄i)
indicate that Xi is a well defined cluster and large values of
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(a) Well-separated clusters
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(b) Images in the embedded space
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(c) Grouping results of spectral clustering
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(d) Significantly intersecting clusters
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(e) Images in the embedded space
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(f) Grouping results of spectral clustering

Fig. 2. Different performances of classical spectral clustering on well-separated clusters and significantly intersecting clusters.

vol(Xi) indicate clusters of considerable size, it follows that
lower values of Ncut correspond to better clusterings. Thus
the aim is to minimize Ncut.

Following some algebraic formulations, it turns out [23] that
minimizing normalized cut can be equivalently recast as:

min
X1,··· ,Xk

Tr(HT(E − W )H)

S.t. HTEH = I,
(3)

where E is an N ×N diagonal matrix with Eii =
∑

j wij , I

is the identity matrix, H ∈ ℜN×k is a specific discrete matrix,
and Tr denotes the trace of a matrix.

Unfortunately, solving the above discrete optimization prob-
lem is NP-hard. To make it tractable, an efficient relaxation
is adopted so that to solve a real-valued problem instead of a
discrete-valued one [16, 23]. This is done by computing the
first k generalized eigenvectors u1, · · · , uk, corresponding to
the k smallest eigenvalues, of the generalized eigenproblem

(E − W )u = λEu. (4)
Finally, K-means method is performed on the row vectors of
U = [u1, · · · , uk] ∈ ℜN×k to obtain the clusters.

B. Further Analysis on Classical Spectral Clustering

In the following, we discuss how the performance of spec-
tral clustering relies on the constructed affinity matrix W . That
is, spectral clustering methods can work well when the points
belonging to different clusters have (relatively) low weight.

When the k clusters are well-separated, this property of
affinity matrix is easy to achieve by carefully tuning the nearest
parameter K or the scaling parameter σ [23]. In the “ideal”
case where all pairs of points belonging to different clusters
have weight w = 0, each cluster degenerates to a connected
component. In this case, spectral methods will map all the
points in the same cluster into a single point in ℜk and
there are k mutually orthogonal points in this embedded space
[11, 23]. Then, the followed K-means will easily group the
points to the true clusters.

On the contrary, when there are significant intersections
among different clusters, the affinity matrix will be corrupted
with poor pairwise affinity values, i.e., affinity value between

the pair of points belonging to different clusters but near the
intersection is always high since their Euclidean distance is
small. For simplicity of discussion, we assume the data are
consisted of two intersecting clusters. In this case, they look
like a “tight” cluster and thus will be hard to split into two
subsets. In fact, the generalized eigenproblem (E − W )u =
λEu performed on two intersecting clusters is the same as
the optimal objective of LEM (Laplacian Eigenmaps) [1],
which is one of the classical manifold learning methods. It
is easy to show that the first two generalized eigenvectors
are consisted of a component indicator vector with equal
value and an embedding vector which optimally preserves
local neighborhood information of the original data [1]. As
a result, the intersecting structure of the two different clusters
is preserved in the embedded space. Then, the followed K-
means fails to extract useful structure.

In Figure 2, we exhibit different performances of classical
spectral clustering on well-separated clusters and significantly
intersecting clusters. The data are generated from the same two
spirals. In Figure 2 (a), they are well-separated, while they are
intersected at the origin in Figure 2 (d). Figure 2 (b) and (e)
show their images in the embedded space, respectively. For
the purpose of visualization, we use the true class information
to label the samples in these two sub-figures. As can be seen,
the two clusters collapse into two mutually orthogonal points
in Figure 2 (b), while they still mix together in Figure 2
(e). Figure 2 (c) shows that classical spectral clustering gives
perfect grouping to the well-separated clusters, while it is poor
for the significantly intersecting case (see Figure 2 (f)).

III. SPECTRAL MULTI-MANIFOLD CLUSTERING (SMMC)
Given a set of unlabeled data points X = {xi ∈ ℜD, i =

1, · · · , N} that stem from k > 1 distinct smooth manifolds
{Ωj ⊆ ℜD, j = 1, 2, · · · , k}, some of which possibly
intersecting with each other [24], the objective of manifold
clustering is to assign each sample to the manifold it belongs
to. In the sequel, all manifolds are assumed to have the same
dimension d (0 < d < D), which, together with their number
k, is known. An example is illustrated in Figure 1 for k = 3,
D = 3, and d = 2.
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It seems that we can address hybrid nonlinear manifold clus-
tering problem using the following strategy: First, run classical
spectral clustering [11, 16, 23] to reveal all the connected
components. Then, for each of the connected component run,
e.g., K-manifolds [17], to further unravel the intersecting
clusters. However, it is difficult to judge whether a connected
component is composed of a single manifold or multiple
intersecting manifolds, and if it is composed of multiple
intersecting manifolds, how many manifolds are there in this
connected component. Indeed, the difficulties encountered by
this simple design partially motivate us to propose the SMMC
(Spectral Multi-Manifold Clustering) method.

A. The Affinity Matrix

As has been discussed in Subsection II-B, spectral-based
clustering methods are able to work well when the affinity
values of the points belonging to different clusters are rel-
atively low. However, traditional affinity matrix based on a
radial distance between the points is not suitable. Thus, our
basic idea to deal with hybrid nonlinear manifold clustering is
to incorporate some natural and reliable geometric information
of the sampled data to construct a suitable affinity matrix and
then to find the correct clusters.

Though the data are globally lying on or close to multiple
smooth nonlinear manifolds, locally, each data point and its
neighbors are lying on a linear patch of the manifold [13, 14].
Moreover, the local tangent space at each point provides a
good low-dimensional linear approximation to the local geo-
metric structure of the nonlinear manifold [27]. Finally, as it
will become clear shortly, at the intersection areas of different
manifolds, the points on the same manifold have similar
local tangent spaces while the points from different manifolds
have dissimilar tangent spaces. Therefore, this type of local
geometric information can be used to help the construction of
affinity matrix.

For faraway points, it is difficult to judge whether they are
in the same manifold or not by using only local geometric
information, and so we focus on local regions. Intuitively, for
two points in the same local area, if (a) they are close to
each other and if (b) they have similar local tangent spaces,
then they will have high chance to lie on the same manifold.
For nearby points if they have different local tangent spaces,
such as two points at the intersection of S-curve and the
vertical affine subspace (see Figure 1), they are very likely
to come from different manifolds. Thus, we should consider
two affinity functions between two points, xi and xj , with
one of them defined as a function of their corresponding local
tangent spaces (named structural similarity pij), and the other
defined via Euclidean distance qij = q(∥xi − xj∥) (named
local similarity). Then, these two functions are fused together
to give the final affinity value

wij = f(pij , qij), (5)
where f is a suitable fusion function. It should be noted
that, in order to have the expected property of the affinity
matrix, f should be a monotonically decreasing function of
the Euclidean distance and at the same time, a monotonically
increasing function of the similarity of two tangent spaces.

Now, we give the concrete formulation of p, q, and f used
in our current method. Suppose the tangent space at xi (i =
1, · · · , N ) is Θi, the structural similarity between the local
tangent spaces of two points, xi and xj , can be defined as:

pij = p(Θi,Θj) =

(
d∏

l=1

cos(θl)

)o

. (6)

In (6), o ∈ N+ is an adjustable parameter. 0 ≤ θ1 ≤, · · · ,≤
θd ≤ π/2 are a series of principal angles [7] between two
tangent spaces Θi and Θj , defined recursively as:

cos(θ1) = max
u1∈Θi,v1∈Θj

∥u1∥=∥v1∥=1

uT
1 v1 (7)

and
cos(θl) = max

ul∈Θi,vl∈Θj

∥ul∥=∥vl∥=1

uT
l vl, l = 2, · · · , d, (8)

where ul
Tui = 0, vl

Tvi = 0, i = 1, · · · , l − 1.
The local similarity is simply defined as:

qij =
{

1 if xi ∈ Knn(xj) or xj ∈ Knn(xi),
0 otherwise, (9)

where Knn(x) denotes K nearest neighbors of x.
Finally, these two functions are simply multiplied together

to give the affinity value

wij = pijqij =


(∏d

l=1 cos(θl)
)o

if xi ∈ Knn(xj)
or xj ∈ Knn(xi),

0 otherwise.
(10)

It is easy to check that the affinity value defined in (10) has
the expected property, i.e, the points belonging to different
clusters/manifolds have relatively low value. This is because
that when the pair of points from different manifolds are far
from each other, they will have the affinity value of 0. While,
when they are close to the intersection of different manifolds,
they will have dissimilar local tangent spaces which will also
have a relatively low affinity when the tuning parameter o is
large enough. Thus, when spectral method is applied to this
matrix, a better performance is expected.

An unresolved problem in the above formulation is how to
effectively approximate the local tangent space at each sample.
In the following subsection, we will discuss this issue in detail.

B. Local Tangent Space

Generally, the tangent space at each point can be constructed
from the local neighborhood of the given sample [25, 27].
Specifically, given a point x and its n closest neighbors
N(x) = {x1, · · · , xn} in Euclidean space, the local geometric
information around x is captured by its local sample covari-
ance matrix Σx, which is defined as:

Σx = 1/n
∑n

i=1
(xi − ux)(xi − ux)T, (11)

where ux = 1/n
∑n

i=1 xi.
Then, the local tangent space Θx at x is approximated by

the d left singular vectors of Σx corresponding to its d largest
singular values. That is, suppose the SVD of Σx is:

Σx =
[

Ud Ũd

] [ Σd 0
0 Σ̃d

] [
Vd Ṽd

]T
, (12)
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where
[

Ud Ũd

]
∈ ℜD×D is an orthogonal matrix and

Ud ∈ ℜD×d. Then, we have

Θx = span(Ud). (13)
Unfortunately, when two points x and y are very close to

each other, their local tangent spaces Θx and Θy according
to (13) will be very similar even if they are from different
manifolds. This is because that their local neighborhoods
N(x) and N(y) based on the Euclidean distance will strongly
overlap, leading to similar local covariance matrices Σx and
Σy . Therefore, this traditional definition of local tangent space
will not work well for hybrid nonlinear modeling. In the
later part of this subsection, we give an efficient and effective
technique to approximate the local tangent space at each point.

Our basic idea is based on the fact that global nonlinear
manifolds can locally be well-approximated by a series of
local linear manifolds [13, 14], and principal component
analyzers [19] can successfully pass across the intersecting
linear manifolds. Moreover, the points approximated by the
same linear analyzer usually have similar local tangent spaces
which can also be well-approximated by the principal subspace
of the local analyzer. Therefore, we can train a lot of local
linear analyzers to approximate the underlying manifolds, then
the local tangent space of a given sample is determined by the
principal subspace of its corresponding local analyzer.

In this work, we train M mixtures of probabilistic princi-
pal component analyzers [19], where each analyzer is char-
acterized by the model parameters θm = {µm, Vm, σ2

m},
m = 1, · · · ,M , where µm ∈ ℜD, Vm ∈ ℜD×d and σ2

m

is a scalar. It should be noted that M refers to all local
linear manifolds that are used to approximate all the linear or
nonlinear manifolds that underlie the data set. Under the m-th
analyzer, a D-dimensional observed data vector x is related to
a corresponding d-dimensional vector of latent variable y as:

x = Vmy + µm + εm, (14)
where µm is a robust mean of data, and the latent variable y
and the noise εm are Gaussian functions as y ∼ N (0, I) and
εm ∼ N (0, σ2

mI), respectively. Then, the marginal distribution
of x is given by

p(x |m ) =
(2π)−D/2|Cm|−1/2 exp

{
−1

2 (x − µm)TC−1
m (x − µm)

}
,

(15)
where the model covariance is

Cm = σ2
mI + VmVm

T. (16)
We can learn all the model parameters µm, Vm, and σ2

m by
using EM method to maximize the log-likelihood of observing
the data set X = {xi, i = 1, · · · , N}:

L =
∑N

i=1
ln
{∑M

m=1
πmp(xi |m )

}
, (17)

where eqs. (15) and (16) are utilized and πm is the mixing pro-
portion, subject to πm ≥ 0 and

∑M
m=1 πm = 1. Specifically,

the principal steps of the EM learning method [19] are:
E-step: Using the current set of parameters θm =

{µm, Vm, σ2
m}, compute:

Rim =
πmp(xi |m )∑M

m=1 πmp(xi |m )
, (18)

Algorithm SMMC (Spectral Multi-Manifold Clustering)
Input: Data set X , number of clusters k, dimension of

the manifolds d, number of mixture models M ,
number of neighbors K, tuning parameter o.

Process:
1: Train M d-dimensional local linear manifolds by using

MPPCA to approximate the underlying manifolds;
2: Determine the local tangent space of each point;
3: Compute pairwise affinity between two local tangent

spaces using (6);
4: Compute the affinity matrix W ∈ ℜN×N using (10);
5: Compute the diagonal matrix E with Eii =

∑
j wij ;

6: Extract the first k generalized eigenvectors u1, · · · , uk

of (E − W )u = λEu;
7: Apply K-means to cluster the row vectors of U in ℜk.

Output: A partition of the data into k disjoint clusters.

Fig. 3. Pseudo-code of SMMC (Spectral Multi-Manifold Clustering)

πnew
m =

1
N

∑N

i=1
Rim, (19)

µnew
m =

∑N
i=1 Rimxi∑N
i=1 Rim

. (20)

M-step: Re-estimate the parameters Vm and σ2
m as:

V new
m = SmVm(σ2

mI + T−1
m V T

m SmVm)−1, (21)

(σ2
m)new =

1
d
tr[Sm − SmVmT−1

m (V new
m )T ], (22)

where

Sm =
1

πnew
m N

∑N

i=1
Rim(xi − µnew

m )(xi − µnew
m )T

, (23)

Tm = σ2
mI + V T

m Vm. (24)

Note that we use K-means to initialize EM. Finally, sample
xi is grouped into the j-th local analyzer subject to:

p(xi |j ) = max
m

p(xi |m ), (25)

and the local tangent space of xi is then given by

Θi = span(Vj). (26)

We can estimate the reconstruction error of using M local
linear analyzers to approximate the underlying manifolds as:

error(M) =
∑M

j=1

∑Nj

l=1
(xj

l − µj)
T
(I−VjVj

T)(xj
l −µj),

(27)
where xj

l , l = 1, · · · , Nj are the Nj (
∑M

j=1 Nj = N ) points
which are grouped into the j-th local analyzer.

C. Final Algorithm and Complexity Analysis

After the local tangent space of each point has been esti-
mated, we can compute the affinity matrix W as described
in Subsection III-A. Then, spectral method is used on this
matrix to give the final clusters. The pseudo-code of our
method, which is named as Spectral Multi-Manifold Clustering
(abbreviated as SMMC), is shown in Figure 3.
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(g)-(h) Magnified images of the intersection regions D and E, respectively.

Let us further analyze the computational complexity of
SMMC. The complexity of SMMC is composed of three parts:
estimating the local tangent space of each sample, computing
the affinity matrix W , and applying spectral method on W .
The N local tangent spaces Θi, i = 1, · · · , N are estimated
using EM on M mixtures of probabilistic principal component
analyzers, with K-means to initialize the model parameters.
This procedure has complexity of O(NDM(t1 +dt2)), where
t1 and t2 are the number of iterations before K-means and EM
to convergence, respectively. In the second part, the complexity
of computing the affinity values between any two local tangent
spaces is O(N2Dd2). For the K nearest neighbors search for
each sample, the complexity is O((D + K)N2). The third
part uses spectral method on W to project the data onto a
k-dimensional embedded space, and then K-means is used
to group the data into k clusters. The complexity of the
generalized eigenvector problem is O((N + k)N2), and the
complexity of K-means on the k-dimensional embedded space
for t3 iterations is O(Nk2t3). Thus, the total time complexity
of the SMMC method is

O(N3+N2(Dd2+K+k)+N(DM(t1+dt2)+k2t3)). (28)
Since the number of iterations before the convergence of K-
means and EM are usually small (less than 50), d < D,
K ≪ N , k ≪ N , and M ≪ N , the complexity of SMMC is
primarily determined by N and D.

IV. EXPERIMENTS AND APPLICATIONS

In this section, we test the performance of SMMC
using a series of synthetic and real-world data sets.
We also compare our method with several state-of-the-art
techniques. The codes and data are available online at
http://lamda.nju.edu.cn/code SMMC.ashx.

A. Experiment Setting and Evaluation Metric
All of our experiments are performed on a PC machine

configured with Intel Dual Core based system with 4 ∗ 2 GHz
CPU and 8GB RAM memory under Matlab platform.

In all the following experiments, we use the results of
K-means as the baseline for comparison. Among different
versions of classical spectral clustering, the unsymmetrical
normalized spectral clustering [16] is used following von
Luxburg’s suggestion [23]. As in [11], the scaling parameter
σ2 in spectral clustering is searched over a large range from
10−5 to 105 at 100.5 step, and the best result is reported.

Clustering accuracy is used as the evaluation criterion to
assess the performance of clustering, which is computed by
using the true class labels associated with each of the data
sets. Clearly, higher accuracy implies better performance.
Clustering accuracy is defined as the maximum classification
accuracy among all possible alignments:

clustering accuracy = max
align

∑N

i=1
δ(ti = ci)/N, (29)

where ti is the true label and ci is the obtained cluster label
of xi, δ(·) is the delta function.

B. Simulations on Synthetic Data

In this subsection, we conduct a series of simulations on
synthetic data sets with controllable structures to examine the
effectiveness of the SMMC method and to compare our results
with those obtained by using state-of-the-art methods.

1) Effectiveness of MPPCA on Handling Intersection Re-
gions: We first show how reliably the proposed MPPCA
can handle the intersection regions, i.e., effectively separating
the different sides of the manifolds near the intersection into
different probabilistic analyzers. We conduct experiments on
the hybrid data (see Figure 1) and the three-lines data (see
Figure 4 (e)), the results are shown in Figure 4. Different local
linear patches corresponding to the M probabilistic analyzers
are shown in Figure 4 (a) and (f) via different colors and
symbols. To see more clearly how MPPCA separates the points
near the intersection into different local linear patches, we
magnify the intersection regions in Figure 4 (b)-(d) and (g)-
(h), respectively. As we can see from this figure, MPPCA
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Fig. 5. Grouping results using different methods on the hybrid data. Different clusters are shown via different colors and symbols.

40 60 80 100 120

20

40

60

80

100

Number of mixture models (M)

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

 

 

K−means
Spectral clustering
Average accuracy of SMMC
Best accuracy of SMMC

(a) Different M values

10 20 30 40

20

40

60

80

100

Number of nearest neighbors (K)

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

 

 

K−means
Spectral clustering
Average accuracy of SMMC
Best accuracy of SMMC

(b) Different neighbors

5 10 15

20

40

60

80

100

Tuning parameter (o)

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

 

 

K−means
Spectral clustering
Average accuracy of SMMC
Best accuracy of SMMC

(c) Different o values

40 60 80 100 120
0

500

1000

1500

Number of mixture models (M)

A
pp

ro
xi

m
at

io
n 

er
ro

r

 

 
Average approximation error

(d) Reconstruction error

40 60 80 100 120
0

10

20

30

Number of mixture models (M)

R
un

ni
ng

 ti
m

e

 

 

Average time for tangent spaces
Average time of SMMC

(e) Running time

Fig. 6. Influence of parameters for SMMC.

obtains a collection of good local patches (each ideally from
one manifold) to break the intersection regions.

2) Visual Comparison on Synthetic Hybrid Data: In this
subsection, we visually compare the performance of SMMC
with K-means and spectral clustering to the task of detection
of multiple hybrid manifolds. The results performed on the
hybrid data of Figure 1 are shown in Figure 5. As we can see
from Figure 5 (c), SMMC reliably finds clusters consistent
with different manifolds. Traditional spectral clustering works
better than K-means, which can correctly partition the sep-
arated Swiss-roll from the other two manifolds. However, it
still confuses points from the two intersecting manifolds.

3) Model Selection: There are three adjustable parameters
in the SMMC method, i.e., M , K, and o. In this subsection,
we study how these parameters influence the performance of
SMMC and then give some guidelines for their selection. The
results performed on the hybrid manifolds of Figure 1 are
plotted in Figure 6. The results are shown in two manners:
(1). The average clustering accuracy of SMMC (which is
averaged over 10 independent trials) is shown to analyze the
clustering performance from the viewpoint of statistics. (2).
The best clustering accuracy of SMMC is compared with the
best results of K-means and classical spectral clustering, with
the aim to show the efficacy of our method in dealing with
hybrid nonlinear manifold clustering.

From these results, we make several interesting observa-
tions: (a). The performance of SMMC depends more on the
number of mixture models. However, it can be seen clearly
from Figure 6 (a) that the more the number of mixture models,
the higher the clustering accuracy. This phenomenon can be
explained from Figure 6 (d): as the number of mixture models
increases, the average approximation error decreases which
means that the approximation to the local linear patches of
the manifolds is more faithful. Thus, the estimation for the
local tangent space of each sample is more reliable, leading to
better performance of SMMC which relies on the estimation
of these tangent spaces. (b). The performance of SMMC is
robust for a range of values of K as long as it does not include
neither too small nor too large values, which is consistent with

many existing observations (e.g., see [14, 18]). The reason is
that there may be many disconnected sub-clusters when K
is too small, while local restriction will lose when it is too
large. (c). SMMC works well when the tuning parameter o
is large enough. The reason is that the larger o, the better
separability of points from different manifolds since for x < 1,
xo gets closer to zero for larger values of o. (d). To complete
our theoretical analysis of computational complexity, we also
show the average running time of SMMC, as well as the
average time for estimating the tangent spaces. As we can
see from Figure 6 (e), the time for estimating the tangent
spaces is nearly linear with the number of analyzers M , which
is consistent with our theoretical analysis. However, the total
running time of SMMC seems independent of the number of
mixture models. This observation is reasonable, since the time
complexity of SMMC is dominated by computing the affinity
matrix W and performing spectral analysis on W , which are
independent of the number of mixture models.

From the above observations, we can give some rules of
thumb to the setup of these three parameters. As a general
recommendation we suggest to work with M = ⌈N/(10d)⌉,
K = 2 ⌈log(N)⌉1 and o = 8. When all the manifolds are ap-
proximately linear, we can work with a relative small M , e.g.,
M = 3k. Moreover, we recommend to search for the optimal
values of these parameters as M ∈ [⌈N/(10d)⌉ , ⌈N/(2d)⌉],
K ∈ [⌈log(N)⌉ , 3 ⌈log(N)⌉] and o ∈ [4, 12]. However, it
should be noted that, for general data sets, the optimal values
of these parameters should be selected according to noise level,
the distribution of the samples, etc.

4) Comparison with State-of-the-art Methods: Since a con-
siderable amount of work has been done on manifold cluster-
ing, it is interesting and meaningful to compare our proposed
SMMC with these state-of-the-art methods.

1Generally, M should be set to make sure that the approximation to the
local linear patches of the manifolds is faithful enough. It seems that we
can set M = ⌈N/(d + 1)⌉ since d + 1 points define the position of a d-
dimensional plane. However, this setting is much sensitive to noise. K should
be set to make sure that the similarity graph of the same manifold is connected
which should be chosen on the order of log(N) as shown in [23].
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Fig. 7. Data samples with a wide variety of structures: (a) Three planes (each has 400 samples). (b) Five affine subspaces, where there are two subspaces
lying approximately in the same affine line but are well-separated (N = 700). (c) Two circles (each has 300 points). (d) Two spirals (each has 500 samples).

TABLE I
COMPARISON OF THE CLUSTERING ACCURACY (MEAN±STD. FOLLOWED BY THE HIGHEST ACCURACY IN THE PARENTHESES) AND THE AVERAGE

COMPUTATION TIME (IN SECONDS) ON FIVE SYNTHETIC DATA SETS. THE HIGHEST CLUSTERING ACCURACY ON EACH DATA SET IS MARKED BY A
DIAMOND. THE BEST PERFORMANCE IS HIGHLIGHTED BY A STAR AND THE PERFORMANCES WITHOUT SIGNIFICANT DIFFERENCE WITH THE BEST

PERFORMANCE ARE BOLDFACED (PAIRED t-TEST AT 95% SIGNIFICANCE LEVEL)

Data set
Three-planes Five-affine-subspaces Two-circles Two-spirals Hybrid data

accuracy time accuracy time accuracy time accuracy time accuracy time

K-means
0.366±0.012

0.02
0.580±0.022

0.01
0.501±0.001

0.01
0.538±0.003

0.01
0.563±0.042

0.02
(0.391) (0.606) (0.505) (0.582) (0.619)

GPCA
0.983±0.000

0.01
0.787±0.000

0.01
0.500±0.000

0.01
0.524±0.000

0.01
0.458±0.000

0.02
(0.983) (0.787) (0.500) (0.524) (0.458)

K-planes
0.944±0.120

0.01
0.789±0.095

0.01
0.502±0.002

0.01
0.549±0.001

0.01
0.355±0.010

0.01
(0.983) (0.859) (0.505) (0.552) (0.394)

LSA
0.969±0.000

71.76
0.593±0.000

21.10
0.505±0.000

15.11
0.500±0.000

45.52
0.574±0.000

378.87
(0.969) (0.593) (0.505) (0.500) (0.574)

SCC
0.984±0.001

1.95
0.782±0.069

3.06
0.502±0.002

0.56
0.549±0.021

0.71
0.527±0.096

4.77
(0.987) (0.949) (0.507) (0.596) (0.648)

SC
0.408±0.000

3.29
0.779±0.090

2.39
1.000±0.000∗

1.38
0.588±0.000

4.29
0.724±0.000

3.41
(0.408) (0.831) (1.000)♢ (0.588) (0.724)

K-manifolds
0.746±0.159

837.21
0.469±0.066

144.60
0.519±0.022

59.39
0.765±0.193

261.39
0.411±0.021

4405.11
(0.953) (0.590) (0.593) (0.968) (0.460)

mumCluster
0.889±0.161

6.80
0.830±0.058

4.51
1.000±0.000∗

1.48
0.885±0.000∗

5.97
0.986±0.000

42.73
(0.984) (0.991) (1.000)♢ (0.885) (0.986)

SMMC
0.986±0.003∗

3.50
0.945±0.089∗

1.73
1.000±0.000∗

2.04
0.859±0.127

5.41
0.993±0.037∗

25.11
(0.993)♢ (0.994)♢ (1.000)♢ (0.996)♢ (1.000)♢

We compare SMMC with the following methods: K-means
[9], GPCA [22], K-planes [2, 3], LSA [25], SCC [4], K-
manifolds [17], SC [11, 16] and mumCluster2 [24]. We
compare all these methods on five synthetic data sets with
different characteristics and complexities (see Figure 7 (a)-
(d) and Figure 1). It should be noted that different levels
of noise have been added in all these synthetic data sets.
So, all the points are lying around the underlying manifolds.
It is expected that some methods could not work well in
some scenarios. For example, K-means, spectral clustering
and linear manifold clustering methods could not work well
on intersecting nonlinear manifolds. However, since these
methods are quite famous, and in order to confirm that our
proposed method outperforms them, we also include them in
the comparison.

The average accuracy over 30 independent runs and the
corresponding standard deviations followed by the highest
clustering accuracy of different methods are tabulated in Table
I. The average running time of these methods are also shown in
Table I, which give a rough indication of their time complexity.

These experiments reveal a number of interesting facts: (a).
Linear manifold clustering methods, such as GPCA, K-planes,

2In our current execution, we slightly modify the original mumCluster code
to have a given number of clusters.

LSA and SCC, work well on multiple linear manifolds (e.g.,
the three-planes data set) but may deteriorate on clustering
affine subspaces, which is in line with the observations re-
ported in [4]. Moreover, they fail to deliver good performance
when faced with inherent nonlinear problems, such as the two-
spirals data set and the hybrid data set. (b). Though a lot of
work has shown that classical spectral clustering methods give
promising results to multiple well-separated clusters [11, 16,
23] (e.g., the two-circles data set), the experiments here reveal
that spectral clustering could not work well on intersecting
clusters. (c). K-manifolds delivers good performance to group
samples generated from intersecting manifolds (i.e., the three-
planes data and the two-spirals data). However, it works poorly
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Fig. 8. Data samples drawn from: (a) Two Gaussian “cloud” clusters of
significant overlap (each cluster has 500 points) and (b) A spiral (400 samples)
and a plane (800 samples).
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(a) Five-affine-subspaces data
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(d) Two 6D subspaces in ℜ10

Fig. 9. Clustering performance with different dimensions.

when there are well-separated clusters (e.g., the hybrid data).
The reason is that the estimation of geodesic distances is
unfaithful in this case, leading to incorrect clustering. (d). The
heuristic mumCluster and our SMMC not only give reasonable
performance to linear manifolds and multiple intersecting
nonlinear manifolds, but also work well on the more general
hybrid nonlinear manifold clustering problem. Moreover, the
proposed SMMC achieves the highest clustering accuracy and
the best average accuracy almost in all cases. (e). Generally,
as we have expected, the running time of nonlinear methods
are higher than that of the linear methods, while the cost of
SMMC is comparable to that of the other nonlinear methods.

5) Further Studies: The proposed SMMC method starts
by assuming that the intrinsic or true dimension d of the
low-dimensional manifolds is known and all the underlying
manifolds have the same dimension. It is interesting to see the
performance of SMMC when a value of d other than its true
value is used and when the underlying manifolds have mixed
dimensions. Firstly, we conduct a series of experiments on
the five-affine-subspaces data set, the hybrid data set and two
3-dimensional overlapped “cloud” clusters without significant
manifold structure (see Figure 8 (a)). In our experiments, we
shift them to ℜ10 by padding zeros, and we also generate
two 6-dimensional linear subspaces in ℜ10. The clustering
performance of our SMMC with different dimensions on these
data sets is shown in Figure 9. As can be seen, SMMC works
better around the true dimension and it degenerates to regular
spectral clustering when the given dimension d is faraway
from the ground-truth dimensionality. The reason is that the
performance of SMMC relies on the estimation of the local
tangent space of each sample which is more reliable around
the true dimension. These observations suggest that it is better
to estimate the true dimension of each manifold before using
SMMC, which is left for future investigation.

We next compare SMMC with the other methods on cluster-
ing manifolds of mixed dimensions in order to further evaluate
their performances. TPMM [8] which groups manifolds ac-
cording to both dimensionality and density is also tested. Two
data sets are used in these experiments, one is the spiral-plane
data used in [8] (see Figure 8 (b)), and the other (denoted
by (1, 2, 3) ∈ ℜ5) is sampled from three linear subspaces in
ℜ5 with dimension 1, 2, 3, respectively. Following Chen and
Lerman [4], we set d as the maximum dimension for all the
methods that can not be directly used to mixed dimensions
(such as LSA, SCC and our SMMC). Table II shows the
clustering accuracy of these methods. As can be seen, SMMC
is comparable to the other methods in these mixed cases.

Similar to SMMC, LSA [25] also uses principal angles

TABLE II
THE PERFORMANCE OF DIFFERENT METHODS WHEN CLUSTERING DATA

SAMPLED FROM MIXED DIMENSIONS. THE BEST ARE BOLDFACED

Data set Spiral-plane data (1, 2, 3) ∈ ℜ5

K-means 88.67% 46.50%
GPCA 98.92% 96.08%

K-planes 67.58% 99.91%
LSA 69.08% 99.58%
SCC 99.00% 99.91%
SC 92.75% 80.58%

K-manifolds 73.83% 99.75%
mumCluster 86.17% 87.58%

SMMC 99.75% 100.00%
TPMM 98.58% 75.92%

for defining pairwise affinities, but in a different way: pij =

e−
∑d

l=1
sin2(θl). It would be interesting to compare the affinity

in (6) with the other affinity definitions which use princi-
pal angles. Therefore, we replace the affinity in (6) with
pij =

∑d
l=1 cos2(θl), pij = e−

∑d

l=1
sin2(θl) in LSA and

pij = (e−
∑d

l=1
sin2(θl))o which adds a tuning parameter o in

LSA, to define the similarity of the tangent spaces, denoted as
SMMC-cosine, SMMC-LSA and SMMC-LSA2, respectively.
Figure 10 shows their clustering performance on five synthetic
data sets. It can be observed that both SMMC and SMMC-
LSA2 outperform the other methods, though SMMC is better
than SMMC-LSA2 on three-planes data set. Compared with
SMMC-LSA, the good performance of SMMC-LSA2 suggests
that it is beneficial to have an additional tuning parameter o to
make the points belonging to different clusters have (relatively)
low weights, which is expected for the success of spectral
clustering as we have discussed in Section II.

C. Experiments on Real Data

In this subsection, we further test the performance of
SMMC on several real data sets. We show that the presented

Fig. 10. Clustering performance with different definitions of subspace affinity
on five synthetic data sets: A. three-planes, B. five-affine-subspaces, C. two-
circles, D. two-spirals, and E. hybrid data.
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Fig. 11. Twenty images of 20 objects from the COIL-20 database

SMMC method provides an effective tool and a generic
solution for a broad range of practical problems.

1) Clustering of 2D Image Data: In the following ex-
periments, the processed COIL-20 database3 [10] is used.
COIL-20 is a database with 1,440 normalized gray-scale
images of 20 objects, each object has 72 images. As can
be seen from Figure 11, the objects have a wide variety of
complex geometric, appearance and reflectance characteristics.
The original resolution of these images is 32 × 32. Here, for
computational efficiency, we project them onto the first 10
principal components.

Several studies (e.g., [21]) have shown that images of
the same object are resided on a 1-dimensional nonlinear
manifold. Moreover, the estimation of geodesic distances on
the whole database fails even when we increase the number
of neighbors to 60, which indicates that there are widely sep-
arated clusters in this database. Therefore, grouping different
objects of this database can be seen as a hybrid nonlinear
manifold clustering problem.

In the first experiment, the whole database is used. To exe-
cute K-manifolds in this case, we set the number of neighbors
to be 80 for estimating geodesic distances. Moreover, GPCA
fails to return any result within a reasonable response time (i.e.,
two days), because of its high computational complexity. Thus,
following the authors’ suggestion [22], GPCA is performed on
the first 5 principal components. The experimental results of
different methods are tabulated in the second column of Table
III. In the second experiment, 3 objects subject to the same
topic, i.e., three different cars, are selected from the total of 20
objects. K-manifolds can work in this case since 8 neighbors
are enough to connect all the samples, which reveals that these
three objects are very close to each other. The corresponding
clustering accuracy of different methods are shown in the third
column of Table III.

The results on this real database reveal a number of interest-
ing observations: (a). There are several observations consistent
with the experiments on the synthetic data sets. For example,
linear manifold clustering methods, i.e., GPCA, K-planes,
LSA and SCC, could not work well on this nonlinear database,
and K-manifolds performs poorly due to the presence of sepa-
rated clusters. (b). Inconsistent with the synthetic experiments,
mumCluster does not perform as well as SMMC. The reason
is that mumCluster is more heuristic and heavily relies on
the correct local dimension estimation, it will have difficulty
when there is much noise. (c). It is easy to see that SMMC is
superior to the other methods.

2) 3D Motion Segmentation: In this subsection, we apply
SMMC to motion segmentation [20], i.e., segment a video
sequence into multiple spatiotemporal regions corresponding
to different rigid-body motion objects.

3http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php

TABLE III
COMPARISON OF CLUSTERING ACCURACY (MEAN±STD.) ON THE

COIL-20 DATABASE. THE BEST PERFORMANCE ON EACH DATA SET IS
MARKED BY A STAR AND THE PERFORMANCES WITHOUT SIGNIFICANT
DIFFERENCE WITH THE BEST PERFORMANCE ARE BOLDFACED (PAIRED

t-TEST AT 95% SIGNIFICANCE LEVEL)

Data set COIL-20 COIL-three-cars

K-means 0.338±0.021 0.348±0.005
GPCA 0.332±0.000 0.375±0.000

K-planes 0.531±0.044 0.350±0.020
LSA 0.643±0.024 0.353±0.004
SCC 0.671±0.040 0.349±0.007
SC 0.693±0.015 0.366±0.017

K-manifolds 0.299±0.019 0.425±0.027
mumCluster 0.523±0.040 0.508±0.029

SMMC 0.707±0.051∗ 0.700±0.056∗

A benchmark motion segmentation database, i.e., the Hop-
kins 155 motion database4, is used in this experiment. The
database includes 155 motion sequences of indoor and out-
doors scenes containing two or three motions, which can be
divided into three main categories: articulated, checkerboard,
and traffic sequences [20]. For each sequence, a set of feature
points were tracked automatically with a tracker, and outliers
in tracking were manually removed. The articulated sequences
contain multiple objects moving dependently in 3D space,
while both checkerboard and traffic sequences contain multiple
objects moving independently. The motion trajectories of these
sequences lie in dependent or independent affine subspaces of
dimension two or three. In this case, solving the motion seg-
mentation problem is equivalent to the hybrid linear manifold
clustering problem [22].

The proposed SMMC is compared with the linear manifold
clustering methods (i.e., GPCA, K-planes, LSA and SCC)
which are specially effective for 3D motion segmentation
[4, 22, 25]. Since GPCA requires a low dimensional space
to work properly, we strictly follow the authors’ suggestion
[22] to reduce the dimension of the data D = 2F to a 5-
dimensional ambient space. All the other methods are executed
in the original D-dimensional space. Table IV reports the
average and median clustering accuracy of these methods. It
can be seen that the performance of the proposed SMMC is
highly competitive to SCC which is the best among the linear
methods, while the mean of SMMC is the best.

3) Statistical Testing: To further investigate the clustering
results, we conduct paired t-test and paired Wilcoxon rank
sum test at 95% significance level using the COIL-20 database
in Subsection IV-C1, as well as five synthetic data sets used
in Subsection IV-B4. Thus, there are totally 7 different data
sets with a wide variety of geometric characteristics. The
win/tie/loss counts of SMMC versus the other methods are
summarized in Table V.

It can be observed from Table V that SMMC rarely loses
to the other methods. Furthermore, though the counts of
win/tie/loss can indicate whether SMMC is better than another
method by checking if the number of wins is larger than that
of losses, we also conduct the sign test at 95% significant level

4http://www.vision.jhu.edu/data/hopkins155.
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TABLE IV

CLUSTERING ACCURACY (%) OF DIFFERENT METHODS ON THE HOPKINS 155 MOTION SEGMENTATION DATABASE. THE BEST ARE BOLDFACED

Method Accuracy
Two motions Three motions All

Articulated (11) Checkerboard (78) Traffic (31) All (120) Articulated (2) Checkerboard (26) Traffic (35) All (35) All (155)

GPCA
Mean 93.06 92.72 98.01 94.12 79.65 73.56 90.53 77.30 90.32

Median 100.00 97.22 100.00 98.84 79.65 71.39 97.56 76.69 96.89

K-planes
Mean 92.95 87.62 91.04 88.99 69.11 85.74 96.83 87.01 88.55

Median 100.00 89.66 100.00 95.92 69.11 84.16 100.00 89.84 94.67

LSA
Mean 84.92 76.45 79.42 77.99 80.51 62.56 68.61 64.80 75.01

Median 87.90 75.97 78.50 78.71 80.51 62.39 64.78 64.33 74.47

SCC
Mean 98.96 99.26 99.95 99.41 97.34 97.15 99.93 97.71 99.03

Median 100.00 100.00 100.00 100.00 97.34 99.89 100.00 100.00 100.00

SMMC
Mean 99.30 99.34 99.99 99.51 98.40 96.59 100.00 97.38 99.03

Median 100.00 100.00 100.00 100.00 98.40 98.97 100.00 99.39 100.00

TABLE V
THE WIN/TIE/LOSS COUNTS OF SMMC VS. THE OTHER METHODS, AFTER PAIRED t-TEST AND PAIRED WILCOXON RANK SUM TEST AT 95%

SIGNIFICANCE LEVEL.

K-means GPCA K-planes LSA SCC SC K-manifolds mumCluster

t-test 7/0/0 7/0/0 6/1/0 7/0/0 7/0/0 5/2/0 7/0/0 4/3/0
Wilcoxon rank sum test 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 5/2/0

on the corresponding t-test results and Wilcoxon rank sum test
results to further investigate whether SMMC is “significantly”
better than any other of the previous methods. The results
indicate that SMMC is indeed significantly better than all the
other compared methods.

In summary, this statistical testing validates the efficiency of
SMMC on both synthetic data sets and real-world problems.

D. Discussion

In the above two subsections, i.e., Subsection IV-B and
Subsection IV-C, several experiments on a large number of
synthetic data sets with controllable structures and real-world
problems have been systematically performed to show the
efficiency of our proposed SMMC. These experiments reveal
several interesting points:

1. Generally, all the manifold clustering methods perform
better than the baseline K-means, which is a classical centroid-
based clustering method. This reveals that clusters usually have
complicated structure and can not be separated by hyperplanes.
Also, these experiments indicate that it is a reasonable and
promising generalization to regard a cluster as a group of
points centered on a compact low-dimensional manifold, at
least in some applications.

2. Linear methods, such as GPCA, K-planes, LSA and
SCC, deliver promising performance when the samples lie on
linear manifolds but fail when faced with inherent nonlinear
problems. Traditional spectral clustering methods based on
pairwise distance could not work well when there are inter-
secting clusters. On the contrary, K-manifolds is limited to
intersecting manifolds because of the estimation of geodesic
distances.

3. Both mumCluster and SMMC give promising results to
the general problem of hybrid nonlinear manifold clustering.
However, mumCluster is quite heuristic and heavily relies on
the correct estimation of intrinsic dimension. Thus, mumClus-
ter works well on the synthetic data sets with controllable
structures, but has difficulty when there is much noise in the
data, such as the COIL-20 database. On the other hand, the
proposed SMMC performs the best almost in all cases.

4. Apart from GPCA which is a non-iterative method that
does not require initialization (this fact has been confirmed
in our experiments since all the standard deviations of GPCA
are zero), all the other methods need multiple starts in order
to obtain good solution. The experiments on the average
clustering accuracy and the corresponding standard deviations
of different methods show that there is no method that is
consistently better than the others under all circumstances.
This phenomenon suggests that their performances mostly
depend on how the data distribute on the manifolds. Thus,
we should try to learn more about the data set at hand, such
as noise level, the distribution of the samples, and so on,
before adopting the most appropriate method. However, the
experiments have shown that the proposed SMMC always has
the highest clustering accuracy and the best average accuracy.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the SMMC (Spectral Multi-
Manifold Clustering) method for hybrid nonlinear manifold
clustering, where some data manifolds are separated but some
are intersected. Our method is based on the analysis that
spectral clustering are able to work well when the affinity
values of the points belonging to different clusters are rel-
atively low. Under the assumption that the unlabeled data
observations are lying on or close to multiple smooth low-
dimensional manifolds, we take advantage of some natural
local geometric information of the sampled data, i.e, local
tangent space at each sample, to construct an affinity matrix
with the expected property. Spectral method is then applied to
this affinity matrix to find the clusters. Extensive experiments
show that SMMC achieves good performance over a broad
range of parameter settings and is highly competitive with
state-of-the-art methods.

There are several interesting future issues:
1. To improve the robustness: Many of the current methods

can provide stable solutions to manifold clustering when
the samples lie on or close to multiple “clean” manifolds,
however, they will fail when the data are contaminated by
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noise, especially when faced with outliers. It is interesting to
improve the robustness of SMMC.

2. To determine the number of clusters and their dimension-
ality: Most existing manifold clustering methods, including
SMMC, require the user to provide the number of clusters
and their intrinsic dimensions. However, such information is
often unavailable in real practice. We thus need to develop
techniques and criterions to automatically determine the opti-
mal value of these parameters.
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