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Abstract—The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence 
their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the 
lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. 
Semi-supervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve 
learning performance, where no human intervention is assumed. In addition, miRNA-binding proteins almost always contain a 
much smaller number of binding than non-binding residues, and cost-sensitive learning has been deemed as a good solution to 
the class imbalance problem. In this work, a novel model is proposed for recognizing miRNA-binding residues in proteins from 
sequences using a cost-sensitive extension of Laplacian Support Vector Machines (CS-LapSVM) with a hybrid feature. The 
hybrid feature consists of evolutionary information of the amino acid sequence (PSSMs), the conservation information about 
three biochemical properties (HKM) and mutual interaction propensities in protein-miRNA complex structures. The CS-LapSVM 
receives good performance with a F1 score of 26.23±2.55 % and an AUC value of 0.805±0.020 superior to exisiting approaches 
for the recognition of RNA-binding residues. A web server called SARS is built and freely available for academic usage. 

Index Terms—Laplacian Support Vector Machine, cost-sensitive learning, miRNA-binding residues, evolutionary information, 
mutual interaction propensities.  

——————————      —————————— 

1 INTRODUCTION
icroRNAs (miRNAs) are endogenous ∼22 nt RNAs 
that act as important gene-regulatory roles in ani-
mals and plants by pairing to messenger RNA 

transcripts (mRNAs) of protein-coding genes to direct 
their posttranscriptional silence[1]. So far, miRNA re-
search has revealed multiple roles in negative regulation 
(transcript degradation and sequestering, translational 
suppression) and possible involvement in positive regula-
tion (transcriptional and translational activation) [1]. By 
affecting gene regulation, miRNAs are likely to be in-
volved in most biological processes, such as in develop-
mental timing, cell death, cell proliferation, haematopoie-
sis and patterning of the nervous system [2]. The process 
of miRNAs for silencing target mRNAs is performed by 
RNA-induced silencing complexes (RISCs) in which the 
main catalytic subunit is one of the Argonaute proteins 
(AGO), and miRNAs serve as a template for recognizing 
specific mRNA sequences [3]. Consequently, the recogni-
tion of miRNA-binding residues in RISCs can significant-
ly improve our understanding of how miRNAs silences 
target genes and understanding of many related biologi-

cal processes, and also provide further insights into pro-
tein functions and mechanisms of protein - miRNA spe-
cific interaction. 

Recently, various computational methods have been 
developed to recognize RNA-binding residues in proteins. 
These methods can be roughly divided into two catego-
ries [4-8], i.e., structure-based and sequence-based predic-
tion methods. There are many types of RNA molecules 
with diverse structures, and the mechanisms of diverse 
RNA molecules recognizing their protein partners are 
often different. Thus, it is not easy to identify the actual 
miRNA-binding residues in proteins using the traditional 
RNA-binding residue prediction methods. It is desired to 
develop computational methods focusing on recognizing 
miRNA-binding residues in proteins.  

Currently, there are few available structures of protein-
miRNA complexes in the Protein Data Bank (PDB) data-
base [9]. Thus, it is difficult to build a strong computa-
tional model for predicting miRNA-binding residues in 
proteins due to the lack of training examples. However, 
numerous miRNA-binding protein sequences can be ob-
tained from the UniProt database [10]; such sequences 
provide abundant unlabeled instances for constructing 
classifiers to predict miRNA-binding residues in proteins. 
Because labeling the unlabeled data requires human ef-
fort and expertise, exploiting unlabeled data to help im-
prove the learning performance has become a very hot 
topic during the past decade. There are two major tech-
niques for this purpose [11, 12], i.e., active learning and 
semi-supervised learning. 
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Active learning [13,14] deals with methods which as-
sume that the learner has some control over the input 
space, and the goal is to minimize the number of queries 
from human experts on ground-truth labels for building a 
strong learner. Semi-supervised learning [16-19] deals 
with methods for automatically exploiting unlabeled data 
in addition to labeled data to improve learning perfor-
mance, where no human intervention is assumed. 
Transductive learning [15] is a specific type of semi-
supervised learning, which tries to exploit unlabeled data 
automatically, but assumes that the unlabeled data are 
exactly the test data. Due to the expensive and time-
consuming processes of experimental determination of 
protein structures and human effort and expertise on rec-
ognizing ground-truth miRNA-binding residues, we will 
focus on semi-supervised learning that tries to exploit 
unlabeled data without human intervention. The 
Laplacian SVM [20] is one of state-of-the-art semi-
supervised learning methods that will be applied for 
building miRNA-binding residues prediction models 
by making use of both labeled and unlabeled data in 
this article.  

MiRNA-binding proteins almost always contain a 
much smaller number of binding than non-binding res-
idues. Learning algorithms that do not consider class-
imbalance tend to be overwhelmed by the majority 
class and ignore the minority one [21]. However, in 
class-imbalance learning, the primary interest is in iden-
tifying the minor class [21]. That is, the cost of misclassi-
fying a minor class example is usually more expensive 
than that of misclassifying a major one [22, 23]. The sit-
uation in our work is that there are only a few miRNA-
binding residues and in practice it is more important 
that miRNA-binding residues will not be missed; thus, 
the cost of misclassifying a miRNA-binding residue (i.e., 
a missing of a binding) is more expensive than misclas-
sifying a non-binding (i.e., a false alarm). In particular, 
cost-sensitive learning has been deemed as a good solu-
tion to the class imbalance problem, and a similar man-
ner can be employed for learning from imbalanced data 
sets and learning when costs are unequal and unknown 
[24]. Therefore, a cost-sensitive learning scheme will be 
incorporated into the Laplacian SVM model to deal 
with the class imbalance problem for building a strong 
miRNA-binding prediction model. 

In a word, the motivation of our work is that for the 
problem of recognizing miRNA-binding residues in pro-
teins from sequences, there are insufficient labeled exam-
ples and the task suffers seriously from class-imbalance. 
Thus, we propose the CS-LapSVM algorithm, a cost-
sensitive extension of Laplacian Support Vector Machine 
[25] for this task. In this paper, a hybrid feature is ob-
tained by combining evolutionary information of the 
amino acid sequence (PSSMs), the conservation infor-
mation about three biochemical properties (HKM) and 
mutual interaction propensities in protein-miRNA com-
plex structures. The results show that our CS-LapSVM 
models reach a F1 score of 26.23± 2.55% with an AUC val-
ue of 0.805± 0.020 for recognizing miRNA-binding resi-
dues in proteins from sequences. 

2 MATERIALS AND METHODS 
2.1 Dataset 
All protein-miRNA complex structures are collected from 
the Protein Data Bank(PDB) [9], and all miRNA-binding 
protein sequences have been downloaded from the Uni-
versal Protein Resource (UniProt) databank[10] (released 
by March 15, 2012) (Table 1). Then, redundancy among all 
protein sequences is removed by clustering analysis using 
the blastclust program in the BLAST package [26] from 
NCBI with a threshold of 25% for sequence identity. Thus, 
the non-redundant dataset MBP20 which contains 20 
amino acid sequences (of these sequences 4 from PDB and 
16 from Uniprot) is created by retaining only the longest 
sequence in each cluster (Table 1).  

TABLE 1 
The Original and Non-redundant Datasets Download-

ed from the PDB and UniProt Databank. 

 
As in previous studies [5,27], an amino acid residue in a 

protein is defined to be a binding site if it contains at least 
one atom that falls within the cutoff distance of 3.5Å  from 
any atoms of the miRNA molecule in the complex, and all 
other residues are labeled non-binding sites. Each in-
stances is a segment of amino acid sequences with length 
l = 11. From a protein sequence with n residues, a total of 
(n−l+1−r) instances are extracted, where l is the sliding 
window size and r is the number of residues that lack 
information about their atomic coordinates in the PDB 
entries. An instance is labeled positively if the central res-
idue is miRNA-binding or negatively if the central resi-
due is non-binding. Unlabeled instances are reached by 
scanning the miRNA-binding protein sequences with n 
residues from the UniProt databank using the same slid-
ing window size l= 11 and a total of (n−l 1) instances are 

Original 

PDB (ID) 3A6P 3ADI 3TRZ 3TS0 

 3TS2    

UniProt (ID) Q9XGW1 O04379 O04492 P92186 

 Q8K3Y3 Q2KIA0 Q06413 F1LZC6 

 Q8CFN5 A4UTP7 Q5R444 Q8TCS8 

 Q8K1R3 Q5RCW2 Q01860 F7D1A4 

 Q3MHX3 Q9BWF3 Q4R979 Q8C7Q4 

 Q9BDY9 P48431 Q9GNA3 F1PAY8 

 Q9U4F5 Q9GNA6 Q9GNJ2 Q9GND0 

 Q8MRC7 Q9TW27 Q9TW12 E9Q6I7 

 Q9NHW9 Q9W5S7 Q9NIH3 Q86LT0 

 Q9U6N4    

Non-redundant 

PDB (ID_chain) 3TS0_B 3ADI_A 3A6P_A 3A6P_C 

UniProt (ID) Q9GNA6 Q8CFN5 Q4R979 Q5RCW2 

 F7D1A4 O04379 Q9XGW1 O04492 

 Q01860 P48431 Q9TW12 Q86LT0 

 F1LZC6 P92186 E9Q6I7 Q8K3Y3 
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extracted. Finally, the MBP20 dataset contains 61 positive, 
1298 negative and 7983 unlabeled instances.  

In order to build a true independent test dataset, la-
beled examples in the MBP20 dataset are randomly di-
vided into two parts. The first part, which contains the 
two-third of labeled samples, acts as the training dataset. It 
is used to obtain the prediction performance of CS-
LapSVM models, to analyze the contribution of various 
features on prediction performance and to study the im-
pact of instance lengths on the classifiers’ performance. 
The second part which comprises the one-third of labeled 
samples acts as an independent test dataset for imple-
menting performance comparison with other methods. In 
order to eliminate the influence of randomly sampling on 
prediction performance, the process of randomly generat-
ing the training dataset and the independent test dataset is 
repeated five times and the results are stated by their 
mean and standard deviation of the performance of the 
five datasets.   

2.2 Feature Descriptors 
Nucleic acid molecules can recognize the specific struc-
tural motifs in proteins. Such motifs are more conserved 
in evolution and usually have preferences of some 
physico-chemical properties and the usage of amino acids. 
Therefore, it is beneficial to have a better understanding 
of protein-miRNA interaction and obtain novel feature 
descriptors for building classifiers by analyzing prefer-
ences of physico-chemical properties in miRNA-binding 
regions and mining their correlations among different 
properties. To highlight the importance of the nearest 
neighbor residues in determining whether a residue in-
teracts with nucleotides and evaluate the contribution of 
physicochemical properties in affecting protein-miRNA 
interaction, we use the labels of training data to calculate 
the mutual interaction propensity of a residue triplet and a 
nucleotide during EACH round of cross validations [4]. A 
residue triplet is regarded as interacting with a nucleotide 
when its central residue is miRNA-binding. Here, the 20 
kinds of amino acids are grouped into six classes based 
on their dipoles and side-chain volumes, namely Class a: 
Ala, Gly, Val; Class b: Ile, Leu, Phe, Pro; Class c: Tyr, Met, 
Thr, Ser, Cys; Class d: His, Asn, Gln, Tpr; Class e: Arg, Lys; 
and Class f: Asp, Glu [27]. Meanwhile, nucleic acids are 
clustered into two classes: purine (i) and pyrimidine (j). 
The mutual interaction propensity is defined as follows 
[4]: 

        

,
, 2

,

( , )
( , ) ( , ) log

( ) ( )
i j

i j

i j i j

f x y
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Where x  represents a residue triplet composed of 6 

classes of amino acids

 ( . . ( , , ), ( , , ),..., ( , , ) )i e x a a a a a b f f f , y is a nucleotide 

class  ( . .,  , )i e y i j , 
, ( , )i jN x y  is the number of residue 

triplet x binding with nucleotide y, ( )iN x  is the number of 

residue triplet x, and ( )jN y is the number of nucleotide y. 

For an example with the length of l = 11 residues, 9 tri-
plets are obtained and every triplet is represented by its 
corresponding values of mutual interaction propensity 
with two classes of nucleotides (i, j). 

Evolutionary information of amino acid sequences in 
terms of their position-specific scoring matrices (PSSMs) 
are generated for building miRNA-binding residue pre-
diction models by the PSI-BLAST program[28] searched 
against the nonredundant (nr) dataset of amino acid se-
quences at NCBI with running for three iterations and the 
E-value threshold set to 1e-3. The PSSM elements are 
scaled to the range 0–1 by the standard logistic function 
[29]: 

1( ) .
1 exp( )

f x
x


 

                               (６) 

The evolutionary information of amino acid sequences 
indicated by PSSMs is previously shown to improve the 
performance for predicting RNA-binding residues in pro-
teins [5, 8]. However, it might miss some evolutionary 
information of amino acid sequences, for instance, the 
characteristics of the amino acid distribution and the 
preference of biochemical properties in some regions. 
Thus, new descriptors called HKM have been defined 
using the similar strategy as Wang’s approach [6] to cap-
ture the conservation information about biochemical 
properties of miRNA-binding residues in the present 
study (Figure 1). For a given protein sequence p, its 
homologues Hp = {h1, h2, …, hj) in a reference database can 
be retrieved and aligned to p using PSI-BLAST. Then, the 
sequence alignment is used to compute the mean and 
standard deviations of a feature for each residue ai in the 
protein sequence p. In this study, three biochemical fea-
tures of amino acids (i.e hydrophobicity, side chain pKa 
value and molecular mass) relevant to protein-nucleic 
acid interactions have been investigated. Hydrophobicity 
(feature H) plays a key role in protein folding. Hydrophobic 
amino acids are usually located inside proteins [6], but un-
derrepresented at the miRNA interaction interfaces. The 
side chain pKa value (feature K) expresses the ionization 
state of a residue. Because the phosphate groups of nucleic 
acids are negatively charged, the ionization state of amino 
acid side chains has influence on the interaction with 
miRNA molecules [6]. The value of molecular mass (feature 
M) of each amino acid is unique, and it is closely related to 
the volume of space occupied by the residue in protein 
structures [6]. MiRNA-binding residues may own the size 
constraint to be interacted with the interaction interface. In 
this manuscript, we arrive at the three descriptor values (i.e 
hydrophobicity, side chain pKa value and molecular mass) 
from wang et al. [30]. Therefore, for each instance, the in-
put vector contains 304 feature values, including 18 (2×9) 
mutual interaction propensity elements, 220 (20 × 11) 
PSSMs and 66 (6×11) HKM. 
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Fig. 1. Schematic diagrams for generating new de-
scriptors called HKM. 

 

2.3 Algorithms for classification 
The Cost-Sensitive extension of Laplacian support vector 
machine, namely CS-LapSVM is used for building 
miRNA-binding residues prediction models in proteins 
from sequences in this work.  

Laplacian support vector machine (LapSVM)[22] is a 
popular semi-supervised algorithm. It is built on two im-
portant factors. One is manifold assumption, i.e., similar 
instances have similar outputs; the other is large margin 
principle, i.e., the distributions of two different classes 
have a large margin. 

Formally, given a set of training examples 
where  and 

are labeled and unlabeled data, respectively.  and  are 
numbers of labeled and unlabeled data, respectively. 
LapSVM then aims to learn a decision function  such that 

2 2
2

1 , 1

1arg min ( , , ) ( ( ) ( )) . (7)
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l l u
I
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V x y f f f x f x W
l u l







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

 

the following functional is minimized, i.e., 
Here the first term is the classification loss on labeled 

data, e.g., hinge loss in SVM that enforces the distribu-
tions of two different classes have a large margin; the se-
cond term prefers the decision function to be a simple 
classifier; while the third term enforces that similar in-
stances have similar output according to the similarity 
weighted matrix W of all training instances. 

 
and are 

two parameters trading-off these three terms. It has been 
found that LapSVM is useful for many applications [31, 
32].

    It is evident that LapSVM is cost-blind because it does 
not take any misclassification cost into account. In this paper, 
we extend LapSVM for cost-sensitive scenarios. Specifically, 
for each labeled training example, the misclassification cost 
is incorporated into the classification loss, i.e.,

2 2
2

1 , 1

1arg min ( ) ( , , ) ( ( ) ( )) .(8)
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l l u
I

i i i A i j ij
f i i j
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Where  corresponds to the misclassification cost for 

label . This leads to our proposed CS-LapSVM. It can be 
shown that CS-LapSVM is a convex optimization whose 
global optimal solution can be solved efficiently. Moreover, 
LapSVM package is already public and thus CS-LapSVM is 
easy to implement because CS-LapSVM only makes a mi-
nor modification with LapSVM. As will be verified in em-
pirical study, such a simple modification works quite well.  

2.4 Measurement of classifier’s performance 
The F1 score is the harmonic mean of precision and recall 
(that is, F1 = 2pr/(p + r), where p is precision and r is re-
call), which is a more stable measure, especially for data 
sets with huge class-imbalance [33]. In this article, the F1 
score is the key criteria for selecting the optimal classifier 
during the process of training models for predicting 
miRNA-binding residues in proteins. The receiver operat-
ing characteristic (ROC) curve is to plot the true positive 
rate (sensitivity) against false positive rate (1-specificity), 
and the area under the ROC curve (AUC) is a reliable 
measure for evaluating classifier performance [34]. For 
comparison with other methods, the recall, precision, 
Matthew’s correlation coefficient (MCC) [35], F1 score and 
AUC value are used to assess the prediction performance 
in this study. 

3 RESULTS AND DISCUSSION 

3.1 Prediction performance of the CS-LapSVM 
method 

The CS-LapSVM models are trained by a three-fold cross-
validation procedure for predicting miRNA-binding resi-
dues in proteins from sequences. In this study, the pa-
rameters A  and I  in Equation (7) are fixed to 100 and 
0.1, respectively. The gaussian radial basis function，i.e., 
exp(-gamma(x-xi)^2)， which corresponds to the decision 
function  in Equation (7) is used in this paper, and the 
parameter gamma ranges from 2^(-5) to 2^5 for optimiz-
ing during cross validations. The parameter  in 
Equation (8) corresponds to the misclassification cost for 
label  which involves in two parts, i.e., the cost of mis-
classifying negative class into positive one and the cost of 
misclassifying positive class into negative class (opt.cost). 
In this work, the cost of misclassifying negative class into 
positive one is fixed to 1, whereas the cost of misclassify-
ing positive class into negative class (opt.cost) is set to 
5,10,15,20 and 25 for optimizing. Indeed, the “cost ratio” 
is crucial, rather than the absolute cost values; setting the 
cost of “misclassifying negative to positive” vs. “misclas-
sifying positive to negative” as “1 vs 5” is equal to setting 
them as “10 vs. 50” or “15 vs. 75”. The optimal values for 
parameter gamma and opt.cost are 2^3 and 10 respectively 
after implementing a standard grid search method for 
cross validations. The five training datasets which are 
randomly generated from the MBP20 dataset as the 
scheme described in the Section 2.1 are used, and the re-
sults are stated by their mean and standard deviation of 
the performance on the five datasets. 

In this article each instance for training classifiers is a 
segment of amino acid sequences with a certain length. 
We first study the impact of instance lengths on the classi-
fiers’ performance for identifying miRNA-binding resi-
dues in proteins by CS-LapSVM Models from sequences. 
As indicated in Table 2, when an instance has a  length of 
11 amino acids, the CS-LapSVM Models achieve the best 
performance with an F1-score of 26.23± 2.55% and an AUC 
(area under the ROC curve) value of 0.805± 0.020.  

In addition, the contributions of each kind of features 
are also considered, see Table 3. A position-specific scor-
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ing matrix (PSSM) is a commonly used representation of 
motifs and evolutionary information of amino acid se-
quences. The classifier with the PSSM feature just receives 
a 13.83± 1.43% F1 score and a 0.749± 0.011 AUC value. The 
mutual interaction propensities are to describe prefer-
ences of some physico-chemical properties and the usage 
of amino acids in miRNA-binding regions and mining 
their correlations among different properties. The classifi-
er only with the mutual interaction propensities obtains a 
4.76± 0.50% F1 score and a 0.906± 0.051 AUC value. The 
HKM descriptor is to capture the conservation infor-
mation about biochemical properties of miRNA-binding 
residues. The classifier only with the HKM feature reaches 
a 14.08± 2.34% F1 score and a 0.672± 0.075 AUC value. The 
combination of all features reports the best performance, 
indicating that the combination of all features is capable 
of capturing more information for discriminating 
miRNA-binding sites from non-binding ones. 

 
TABLE 2 

Performance Comparison Based on Different Lengths for 
Defining an Instance in Predicting MiRNA-binding Resi-
dues in Proteins from Sequences by a CS-LapSVM Model. 
The Five Training Datasets Which Are Randomly Gener-
ated from the MBP20 Dataset as the Scheme Described in 
the Section 2.1 Are Used, and the Results Are Stated by 
Their Means and Standard Deviations (Mean ± std) of the 
Performance on the Five Datasets. The Results Show that 
the Model Achieved the Best Prediction Performance 
When the Instance Length Is 11 Amino Acids. 

Length F1 score (%) Recall (%) Precision (%) MCC AUC 

7 24.82± 1.07 61.54± 4.35 15.55± 0.67 0.246± 0.017 0.762± 0.005 

9 26.28± 1.28 42.19± 0.86 19.08± 1.63 0.232± 0.012 0.796± 0.009 

11 26.23± 2.55 63.00± 9.59 16.77± 2.37 0.266± 0.024 0.805± 0.020 

13 23.18± 0.67 54.00± 7.03 14.82± 0.31 0.220± 0.016 0.771± 0.004 

15 17.61± 1.26 73.33± 0.00 10.01± 0.82 0.185± 0.016 0.757± 0.005 

TABLE 3 
The Performance of Our CS-LapSVM Models with Vari-
ous Features for Predicting MiRNA-binding Residues in 

Proteins from Sequences. The Five Training Datasets 
Which Are Randomly Generated from the MBP20 Dataset 
as the Scheme Described in the Section 2.1 Are Used, and 
the Results Are Stated by Their Means and Standard De-
viations (Mean ± std) of the Performance on the Five Da-

tasets. 

Feature F1 score (%) Recall(%) Precision (%) MCC AUC 

A 13.83± 1.43 79.00± 6.02 7.60± 0.90 0.141± 0.017 0.749± 0.011 

B 4.76± 0.50 2.50± 0.21 50.00± 5.11 0.104± 0.023 0.906± 0.051 

C 14.08± 2.34 25.00± 3.15 9.80± 0.81 0.094± 0.018 0.672± 0.075 

AB 23.55± 10.41 36.00± 3.79 19.65± 11.90 0.198± 0.110 0.729± 0.075 

AC 10.38± 0.60 95.00± 5.30 5.49± 0.32 0.095± 0.027 0.783± 0.077 

BC 20.49± 6.41 36.00± 9.12 15.93± 7.11 0.169± 0.066 0.693± 0.039 

ABC 26.23± 2.55 63.00± 9.59 16.77± 2.37 0.266± 0.024 0.805± 0.020 

A:PSSMs  B: Mutual interaction propensities  C:HKM 

3.2 Performance comparison with other methods 
In this article, several machine learning methods are ap-
plied to compare with our CS-LapSVM method. During 

the process of optimizing the parameters of these meth-
ods, a standard grid search method is also utilized and 
the F1 score is the key selection criteria. After obtaining 
the optimal parameters, the five training datasets ran-
domly generated from the MBP20 dataset described in the 
Section 2.1 are used and the results are stated by their 
mean and standard deviation of the performance on the 
five datasets (Table 4). 

When compared with the primary LapSVM method [19] 
(i.e., without considering the cost-sensitive problem), the 
results show that the prediction performance is improved 
after incorporating the misclassification cost for labeled 
examples in the LapSVM model (Table 4). The cost-
sensitive semi-supervised support vector machine 
(CS4VM)[22] is an efficient algorithm that first estimates 
the label means of the unlabeled instances, and then 
trains the CS4VM with the plug-in label means by an effi-
cient SMO solver. The results show that our CS-LapSVM 
method is superior to the CS4VM approach (Table 4). The 
transductive SVM (TSVM) method [36] is one of the state-
of-the-art semi-supervised learning algorithms. TSVM is 
cost-blind and in the experiments we extend it for cost-
sensitive learning as in the CS-LapSVM. It can be seen in 
Table 4 that our CS-LapSVM method outperforms the 
cost-sensitive extension of TSVM (CS-TSVM). 

 In addition, a supervised cost-sensitive SVM (CS-SVM) 
model is built by using only the labeled training examples. 
The results indicate that the method gives poor perfor-
mance with a 0% F1-score when no unlabeled data is ap-
pended for building classifiers (Table 4). A similar situa-
tions also happens in the prediction using the traditional 
SVM method (Table 4). The main reason for poor perfor-
mances reported by the CS-SVM and SVM classifiers is 
that all examples are forecasted as negative class due to 
the small size of labeled examples and a huge imbalance 
of positive versus negative examples in training classifiers. 
Thus, it can be inferred that the unlabeled instances is 
helpful for understanding the overall space distribution 
of instances and finding the optimal classification 
hyperplane for separating miRNA-binding from non-
binding residues.  

To further illustrate the impact of unlabeled instances 
on classifiers’ performance, two foreign instance datasets 
(i.e., siRNA-binding proteins and piRNA-binding pro-
teins) have been used to build models based on the CS-
LapSVM algorithm for predicting miRNA-binding resi-
dues. The results show that both CS-LapSVM classifiers 
based on the two unlabeled instance datasets deteriorate 
prediction performances (Table 5).  

The reason why the unlabeled instances significantly 
contribute to the excellent performance is that the labeled 
examples are insufficient to reflect the overall space dis-
tribution of instances and the geometry of the marginal 
distribution. That is, the models only based on labeled 
examples are not easy to get the ground-truth classifica-
tion hyperplane for separating miRNA-binding residues 
from non-binding. Semi-supervised learning tries to ex-
ploit unlabeled data to help improve learning perfor-
mance, particularly when there are limited labeled train-
ing examples [15]. Therefore, the CS-LapSVM algorithm 
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is developed to exploit unlabeled instances for under-
standing the geometry of the marginal distribution and 
improving the learning performance in this manuscript.  

Belkin illustrates how unlabeled instances may force us 
to restructure our hypotheses during learning [20]. When 
labeled examples are insufficient, additional unlabeled 
examples are helpful to exploit the geometry of the mar-
ginal distribution which should be incorporated in the 
regularization principle to impose structure on the space 
of functions in nonparametric classification or regression 
[20]. In addition, the models based on foreign unlabeled 
instance datasets deteriorate learning performances (Ta-
ble 5) .One important reason for the usefulness of unla-
beled instances lies in the fact that they provide some in-
formation on the data distribution which is able to help 
the construction of prediction model when the amount of 
labeled data is limited [18]. These “foreign” unlabeled 
instances, however, come from other data sets, are not 
able to provide distribution information of the original 
data sets. Thus, it is not strange that by using these for-
eign unlabeled instances, the learning process is misled 
and therefore leads to a worse performance. 

TABLE 4 
Performance Comparison with Other Algorithms. The 
Five Training Datasets and Independent Test Sets Which 
Are Randomly Generated from the MBP20 Dataset as the 
Scheme Described in the Section 2.1 Are Implemented, 
and the Performance Are Presented by Their Means and 
Standard Deviations (Mean ±  std).CS-LapSVM：the Cost-
sensitive Extension of Laplacian SVM ， LSVM ：
Laplacian SVM, CS4VM ： The Cost-Sensitive Semi-
Supervised SVM，CS-TSVM: the Cost-sensitive Exten-
sion of Transductive SVM,CS-SVM：a  Supervised Cost-
sensitive SVM, SVM: Support Vector Machine, RF: Ran-
dom Forest. 

Algorithms F1 score (%) Recall(%) Precision (%) MCC AUC 

CS-LapSVM 20.87± 3.46 57.14± 8.13 12.77± 3.86 0.197± 0.029 0.812± 0.026 

LSVM 15.79± 2.48 71.43± 9.72 8.88± 2.83 0.155± 0.017 0.770± 0.018 

CS4VM 21.05± 3.78 38.1± 5.20 14.55± 5.11 0.175± 0.026 0.751± 0.067 

CS-TSVM 12.5± 1.44 9.52± 3.89 18.18± 0.93 0.101± 0.012 0.687± 0.038 

CS-SVM 0± 0 0± 0 0± 0 0± 0 0.831± 0.087 

SVM 0± 0 0± 0 0± 0 0± 0 0.835± 0.069 

RF 15.6± 4.67 41.9± 8.51 9.62± 3.10 11.58± 6.63 0.695± 0.045 

TABLE 5 
Performance Comparison with Two Foreign Unlabeled 

Instance Datasets.That is, Unlabeled Instances from 
siRNA-Binding Proteins or piRNA-Binding Proteins are 
Used to Build Models Based on the CS-LapSVM Algo-

rithm for Predicting miRNA-Binding Residues. The Five 
Training Datasets Which Are Randomly Generated from 
the MBP20 Dataset as the Scheme Described in the Sec-
tion 2.1 Are Used, and the Results Are Stated by Their 
Means and Standard Deviations (Mean ± std) of the Per-

formance on the Five Datasets. 

Unlabeled data F1 score (%) Recall(%) Precision (%) MCC AUC 

miRNA 20.87± 3.46 57.14± 8.13 12.77± 3.86 0.197± 0.029 0.812± 0.026 

piRNA 13.68± 2.32 38.1± 4.35 8.33± 1.23 0.091± 0.009 0.688± 0.013 

siRNA 12.28± 1.65 33.33± 6.03 7.53± 0.63 0.069± 0.007 0.680± 0.009 

3.3 Performance Comparison with RNA-binding 
Residue Classifiers 

Until now, there was no customized computational 
method for predicting miRNA-binding residues in pro-
teins. Therefore, the RNA-binding residue prediction 
models are implemented for performance comparison 
with our CS-LapSVM method (Table 6). In this paper, 
three web servers, namely, PRBR [5], BindN+ [6] and 
BindN [30] are taken into consideration due to the same 
cutoff distance of 3.5Å  for defining binding residues in 
proteins as our method. In order to ensure that the amino 
acid sequences for extracting training examples are non-
homologous with these for testing, four sequences with 
known three-dimensional strutures in the MBP20 dataset 
(Table 1) are also used to implement the performance 
comparison with RNA-binding residue prediction web 
servers. Each sequence is evaluated by the model trained 
by the other three sequences in our CS-LapSVM method. 
The mean and standard deviation of the prediction per-
formance of four sequences are shown in Table 6, and the 
results indicate that our CS-LapSVM method is obviously 
better than the web servers for predicting miRNA-
binding residues in proteins from sequences. Currently, 
there are so few available protein-miRNA complex struc-
tures in the PDB database. The number of labeled exam-
ples for training our CS-LapSVM classifiers is much 
smaller than that for building each of the three web serv-
ers. Hence, it can be concluded that unlabeled instances 
significantly contribute to the excellent performance of 
our method for predicting miRNA-binding residues in 
proteins from sequences. In addition, note that these ap-
proaches, such as BindN, were not specially designed to 
predict the miRNA-binding residues, and thus the com-
parison is somewhat unfair. However, this comparison 
discloses that RNA-binding residue prediction approach-
es do not work well on miRNA-binding residue predic-
tion, and thus we need to develop methods for miRNA-
binding residue prediction. 

On the other hand, Figure 2 exhibits the details about 
prediction of four amino acid sequences by our model in 
a more intuitive manner and graphical visualization is 
implemented by the PyMOL molecular graphics tool 
(http://www.pymol.org). 

3.4 Application of the CS-LapSVM method on other 
datasets  

In this article, in order to check the learning performances 
of our CS-LapSVM algorithm on other small sample da-
tasets, models are built for recognizing two other types of 
small RNA-binding residues (i.e., siRNA-binding residues 
and piRNA-binding residues) in proteins from sequences 
(Table 6). We obtain the labeled and unlabeled data for 
recognizing siRNA-binding residues and piRNA-binding 
residues using exactly the same scheme as that for 
miRNA-binding residues which is described in the Sec-
tion 2.1 and 2.2. The results show that our CS-LapSVM 
models reach obvious performance improvement on pre-
dicting siRNA-binding residues or piRNA-binding resi-
dues by making use of both labeled and unlabeled data 
after comparing with the SVM-based and random forest-

http://www.pymol.org/
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based models only using labeled data (Table 6). We think 
that the CS-LapSVM algorithm perhaps has the potential 
to handle more problems with small-samples. 
 

TABLE 6 
Performance Comparison with Three RNA-binding Resi-
due Prediction Web Servers (i.e., BindN+, BindN and 
PRBR) Due to the Same Definion for Binding Residues in 
Proteins as Our Method. All Classifiers Are Evaluated by 
Test examples from Four Amino Acid Sequences 
(3A6P_A, 3A6P_C, 3ADI_A and 3TS0_B) with Known 
Three-dimensional Strutures in Our MBP20 Dataset, and 
the Final Performances Are Stated Using Their Means and 
Standard Deviations (Mean ±  SD). Examples From Each 
Sequence Are Assessed by the Model Trained by Exam-
ples from the Other Three Sequences in our CS-LapSVM 
Method. NA: No Available AUC Values for the PRBR 
Classifier Due to the Lack of Prediction Scores. 

 
TABLE 7  

The Performance of Our CS-LapSVM Models for Recog-
nizing siRNA-binding or piRNA-binding Residues in 
Proteins from Sequences. The Five Training Datasets 

Which Are Randomly Generated for Both  siRNA-binding 
and piRNA-binding Residues Datasets as the Scheme 
Described in the Section 2.1 Are Used, and the Results 
Are Stated by Their Means and Standard Deviations 

(Mean ± std) of the Performance on the Five Datasets. SVM: 
Support Vector Machine, RF: Random Forest. 

 

3.5 Web server 
SARS is available at 
http://cbi.njupt.edu.cn/SARS/SARS.htm. On the SARS 
web page, users can copy/paste amino acid sequences 
(≤4 pieces in one run of prediction and only in FASTA 
format) and an E-mail address is required to receive the 
results. The CS-LapSVM model which is used for predict-
ing new proteins in SARS is constructed from all the la-
beled and unlabeled data in the MBP20 dataset. The CS-
LapSVM algorithm is coded by Matlab and implemented 
by the generated executable file with the postfix exe. The 
program slides a window with length l = 11 amino acids 

along the input sequence to receive multiple segments of 
amino acid sequences. Each window segment is arranged 
as an instance and the central residue in each window is 
labeled as whether it binds to miRNA molecules or not. 
Each instance will be maped into a 304-dimention feature 
space which consists of 18 mutual interaction propensity 
elements, 220 PSSMs elements and 66 HKM elements. The 
web server outputs the prediction results of each residue 
which consists of its predicted label, output score. 
 

 
Fig. 2. Prediction results of residues within four amino 
acid sequences (A) the A chain of complex structure 3A6P 
(PDB ID), true positives (TP) 7, false negatives (FN) 17 , 
false positives (FP) 23 and true negatives (TN) 975 , with a 
25.93% F1 score and a 0.789 AUC value,  (B) the C chain of 
complex structure 3A6P , TP 2, FN 0, FP 12 and TN 146, 
with a 25% F1 score and a 0.962 AUC value, (C) the A 
chain of complex structure 3ADI , TP 6,FN 0, FP 33 and 
TN 22, with a 26.67% F1 score and a 0.985 AUC value, (D) 
the B chain of complex structure 3TS0, TP 23,FN 6,FP 49 

and TN 38, with a 45.54% F1 score and a 0.741 AUC 
value. The correctly identified binding residues (TP) are 
in blue space fill; the correctly identified non-binding 
residues (TN) are in red space fill; the binding residues 
with negative predictions (FN) are in yellow space fill; 
the non-binding residues but wrongly predicted as pos-
itives (FP) are in green space fill.The total 10 residues 
located in the N-terminal and C-terminal of the four 
amino acid sequences are not used in reporting predic-
tion performance by our model and shown in white 

space fill. The miRNA molecules are indicated in gray 
wire frame. The presentation in the format of three-
dimensional structures is generated with PyMOL 
(http://www.pymol.org). 

4 CONCLUSIONS  
In this study, we build the first model for predicting 
miRNA-binding residues in proteins from sequences us-
ing the cost-sensitive extension of Laplacian Support Vec-
tor Machine (CS-LapSVM) method with a hybrid feature. 
The hybrid feature is composed of evolutionary infor-
mation of amino acid sequences，the conservation in-
formation about three biochemical properties and mutual 

Classifiers F1 score (%) Recall (%) Precision (%) MCC AUC 

CS-LapSVM 30.78±9.86 77.12±33.42 21.23±8.19 0.264±0.068 0.869±0.122 

BindN+[6] 26.52±21.70 48.27±39.55 18.41±15.19 0.169±0.223 0.713±0.156 

BindN [30] 21.94±14.32 63.61±25.09 16.76±15.90 0.18±0.054 0.742±0.161 

PRBR [5] 15.58±14.43 26.22±23.82 11.14±10.39 0.034±0.066 NA 

Algorithms F1 score (%) Recall (%) Precision (%) MCC AUC 

siRNA-binding Residue 

CS-LapSVM 29.41± 2.12 66.47± 3.36 18.91± 1.68 0.260± 0.025 0.787± 0.020 

SVM 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.000± 0.000 0.810± 0.018 

RF 23.47± 3.67 65.19± 6.87 14.44± 2.81 0.189± 0.032 0.728± 0.032 

piRNA-binding Residue 

CS-LapSVM 28.80± 6.62 39.00± 4.18 24.10± 9.60 0.212± 0.081 0.702± 0.027 

SVM 0.00± 0.00 0.00± 0.00 0.00± 0.00 -0.018± 0.025 0.523± 0.084 

RF 13.10± 5.59 37.36± 25.19 8.30± 3.31 -0.002± 0.104 0.552± 0.076 

http://www.pymol.org/


8 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 

 

interaction propensities in protein-miRNA complex struc-
tures. The results show that the CS-LapSVM model 
achieves a F1 score of 26.23± 2.55% with an AUC value of 
0.805± 0.020. From comparison with other machine learn-
ing methods, the results demonstrate that our CS-
LapSVM method is the most effective for predicting 
miRNA-binding residues in proteins from sequences 
without using 3D structural information. A web server 
called SARS has been built for efficient online predictions. 
In the next step, we will attempt to capture stronger fea-
ture attributes and deal with the class-imbalance problem 
in order to propose a better miRNA-binding residue pre-
diction model, and extend the model to to handle more 
problems with small-samples. 
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