
Reconstruction-based Anomaly Detection with Completely Random Forest

Yi-Xuan Xu∗ Ming Pang∗† Ji Feng∗‡§ Kai Ming Ting∗ Yuan Jiang∗ Zhi-Hua Zhou∗

Abstract

Reconstruction-based anomaly detectors have drawn much

attention recently. Existing methods rely almost universally

on the neural network autoencoder and its variants. Their

performance is limited by the facts that the neural network

autoencoder requires a large training set in order to achieve

high accuracy and has high computational cost. In addition,

its performance depends heavily on tuning a large number

of hyper-parameters. Our work is motivated by recent

studies showing that a forest model is also capable of

capturing information about the dataset, comparable to

that of a neural network autoencoder. We propose a

novel reconstruction-based anomaly detector solely based

on a completely random forest. The proposed method,

RecForest, has three advantages over existing methods.

First, the forest model has much higher training efficiency

and significantly fewer hyper-parameters, addressing the

two above-mentioned issues of neural network autoencoders.

Second, RecForest has two new capabilities compared with

existing forest-based anomaly detectors, i.e., RecForest can

mine outlying attributes and handle irrelevant attributes

in high-dimensional datasets. Third, in terms of mining

outlying attributes, RecForest runs orders of magnitude

faster than state-of-the-art outlying aspect miners on large

datasets. We verify the effectiveness and efficiency of the

proposed method through extensive experiments.

1 Introduction

Anomaly detection is a learning problem that aims to
identify anomalous samples in a dataset. It has been
successfully applied in many domains such as financial
fraud detection and network intrusion detection [10].

Reconstruction-based anomaly detectors have at-
tracted much attention in the research community re-
cently. In order to compute an anomaly score for each
sample, a reconstructed sample will first be generated
by reconstruction-based anomaly detectors. It is well
established that anomalies are much harder to be ac-
curately reconstructed than normal samples, leading to

∗National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing, China. {xuyx, pangm, fengj,
tingkm, jiangy, zhouzh}@lamda.nju.edu.cn

†JD.com, Beijing, China
‡Baiont Technology, Nanjing, China.
§Sinovation Ventures AI Institute, Beijing, China

large reconstruction error [3]. Apart from its verified ef-
fectiveness on anomaly detection, reconstructed samples
can also be used as the augmented data for performance
enhancement on anomaly detection [4], which cannot be
achieved by most anomaly detectors that only produce
an anomaly score for each sample.

Existing reconstruction-based anomaly detectors al-
most universally adopt the neural network model of au-
toencoder. The neural network autoencoder excels at
capturing complex structures of normal data; and its
ability to learn representations for anomaly detection
has increased its appeal. However, its practical use
in anomaly detection is restricted by two deficiencies:
(1) The neural network autoencoder is with high model
complexity and demands a large training set in order
to perform well [3]. Therefore, its effectiveness remains
in doubt on a large number of datasets where the data
sizes are insufficient for it to learn well from the nor-
mal data; (2) The performance of a neural network au-
toencoder depends heavily on tuning a large number of
hyper-parameters. Since priori labels on anomalies are
not available, it is practically hard to fine tune its hyper-
parameters to achieve good performance. As a result
of these deficiencies, the application of reconstruction-
based anomaly detectors is also inhibited.

Recent studies show that a forest model is also
capable of capturing information about the dataset,
comparable to that of a neural network autoencoder
[12, 19, 20]. Exploiting such information enables the
forest model to be applied to various tasks, even those
initially believed to be the specialty of neural networks,
such as feature induction [16], learning distributed
representations [7], and data encoding [6]. Motivated
by these advancements, we believe that a forest model
can also be used as a reconstruction-based anomaly
detector. As a result, the key advantages of forest are
retained, e.g., having small training cost and very few
hyper-parameters. Another advantage is that the model
complexity of forest is proportional to the data size,
making it more robust against over-fitting [18].

Although forest-based anomaly detectors are widely
used in the literature, there is a dearth of works that at-
tempt to exploit information in the forest for anomaly
detection. Existing forest-based methods usually rely
on a single statistic derived from the forest for anomaly

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



detection, e.g., tree path length [11], collusive displace-
ment score [9], and partial identification score [8]. The
use of a single statistic is insufficient to distinguish
anomalies from normal data in many cases [21], and
it also does not allow us to identify outlying aspects
of anomalies for better interpretability, called outlying
aspects mining in the literature [15].

This paper proposes a novel reconstruction-based
anomaly detector called RecForest (abbreviation for
Reconstruction-based Forest). Similar to using the neu-
ral network autoencoder, anomaly detection is achieved
by identifying a poorly reconstructed sample for each
anomaly. But it has a totally different scheme of sam-
ple reconstruction, which fully exploits information in
the forest model to produce a bounding box that con-
tains the reconstructed result for each test sample.

Our contributions are:

• Proposing a novel reconstruction-based anomaly
detector based on a completely random forest. It
has much smaller training cost, and significantly
fewer hyper-parameters than the neural network
autoencoder, while achieving consistently better
detection accuracy across benchmark datasets.

• Revealing that RecForest can also be used to mine
outlying aspects for a given anomaly. Unlike ex-
isting outlying aspect miners, it does not require
a systematic search. As a result, it runs orders of
magnitude faster than existing miners with compa-
rable mining outcomes.

• Providing an insight on how a forest model can be
used for anomaly detection: the bounding boxes in
trees for a test sample can be exploited to improve
the accuracy of forest-based anomaly detectors;
and the resulting model is also robust against
irrelevant attributes in high-dimensional datasets.

The rest of the paper is organized as follows: The
related work is first discussed in Section 2. Section 3
introduces the proposed method based on a completely
random forest, and how it is used for anomaly detection
and outlying aspects mining. The experimental settings
and the empirical evaluations are presented in the next
two sections. We conclude in the last section.

2 Related Work

In this section, we briefly introduce subareas related
to the RecForest: reconstruction-based/forest-based
anomaly detectors, and outlying aspects mining.

Reconstruction-based anomaly detectors assume
that anomalies are much harder to be accurately recon-
structed than normal samples. Under the framework of

deep learning, recent work mainly explores the neural
network autoencoder for reconstruction-based anomaly
detection. The basic idea is to find a reduced space that
better clusters normal data. As a result, anomalies are
much harder to be reconstructed when projecting them
from this reduced space back to the input space [1].
The variational autoencoder extends this idea and fur-
ther finds a distribution that better fits normal data [5].
To mitigate the problem that the performance of neural
network autoencoder is unstable, Chen et al. [3] combine
many neural network autoencoders via ensemble learn-
ing. However, the computational cost also increases
drastically. To overcome the information loss caused by
the projection, Zong et al. [21] propose to concatenate
the neural network autoencoder with gaussian mixture
model. These methods all strive to improve the neu-
ral network autoencoder, and their effectiveness is still
restricted by the above-mentioned deficiencies. Despite
the fact that our work also follows the one-class set-
ting with a clean training set, it explores that whether
reconstruction-based anomaly detectors can be built on
other models instead of neural network autoencoders.

Another related line of work to ours is forest-based
anomaly detectors. Most related to our work is isolation
forest (iForest), which also uses a completely random
forest and computes the average tree path length as the
anomaly score [11]. PIDForest is another forest-based
anomaly detector based on a novel anomaly score called
partial identification score [8]. Instead of randomly
choosing attributes for splitting as in iForest, PIDForest
adopts a new splitting criterion to find splits for internal
nodes heuristically. Our work is different in that we
focus on how to exploit information in the forest instead
of designing a better forest model. The underlying
model of RecForest is arguably in the simplest form of
forest models: completely random forest.

Interpretability on anomaly detection has received
growing interests recently. Given a dataset of normal
samples and a query anomaly, an outlying aspects miner
aims to identify the attributes that make this anomaly
outlying. Vinh et al. [17] combine Beam search with
anomaly detectors to examine subspaces in the input
space and find the most outlying one. Treating the
separation of the anomaly from normal data as a binary
classification problem, Micenková et al. [13] use feature
selection algorithms to identify outlying attributes. In
contrast, we aim to use the same anomaly detector to
perform anomaly detection as well as outlying aspects
mining. We show that the proposed method is more
efficient than existing outlying aspects miners.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



3 Reconstruction-based Forest: RecForest

The proposed method is described in the next three sub-
sections. Section 3.1 introduces the idea of bounding
box and the model used to implement the idea, i.e.,
completely random forest. Section 3.2 presents the
proposed method based on bounding boxes derived from
a forest. We show that the proposed method can be used
to perform outlying aspects mining in Section 3.3.

3.1 Bounding Boxes and Completely Random
Forest. The bounding box for a sample x is a rectan-
gular box in the input space that bounds the neighbor-
ing region of the target x. Given the bounding box,
the reconstructed sample for x is defined as the center
point of the bounding box. RecForest aims to produce
a bounding box for each sample to generate the recon-
structed sample, and the idea of RecForest works only
if the bounding box is small enough to capture the local
neighborhood relevant to the sample x.

To efficiently produce such a bounding box, we
propose to use the completely random tree, where the
split at every internal node is generated randomly (for
both the splitting attribute and the cut-off). The tree
generation process is constrained by the training data
that every split must produce two non-empty subsets.

Given a tree, the bounding box for x is defined as
the region of the leaf node to which x traverses from
the root node of the tree. Since the completely random
tree adopts axis-aligned splitting at internal nodes, the
region of the leaf node corresponds to a rectangular box
in the input space, and it can be identified through
retrieving the decision path to the leaf node. To further
reduce the bounding box, multiple trees are employed
(i.e., a completely random forest). The bounding box of
a forest for x is defined as the intersection of bounding
boxes from all completely random trees.

The tree generation process begins by computing a
bounding box BD at the root node of the tree, which
covers the input range of the training set D. As the
tree grows, each subsequent bounding box defining the
region of an internal or leaf node is getting smaller, as
the depth of the tree increases.

The key symbols used are given in Table 1.

Table 1: Key symbols used.

Symbol Definition

D A dataset with n samples
x A sample [x1, . . . , xd]T in the input space Rd

xrec A reconstructed sample of x
B A bounding box in the input space Rd

LB,UB The lower and upper bound of a bounding box B
T(x) The bounding box of sample x from a tree T
F(x) The bounding box of sample x from a forest F

We provide the formal definitions here and in the
next two subsections.

Definition 1. A bounding box B ⊂ Rd is defined
to be a rectangular box in the input space, which has a
lower bound L and an upper bound U. Concretely, for
each dimension i, we have:

(3.1) B = {x ∈ Rd | Li ≤ xi ≤ Ui, ∀i = 1, . . . , d}.

Definition 2. BD is the smallest bounding box
that covers the dataset D, which has the following lower
and upper bounds for each dimension i = 1, . . . , d:

(3.2)
LBD
i = min{xi | ∀x ∈ D},

UBD
i = max{xi | ∀x ∈ D}.

Definition 3. A completely random tree T is
generated from D by recursively using a randomly
selected attribute i and cut-off ci with split xi > ci to
subdivide the dataset into two non-empty subsets until
the maximum height h is reached or the data run out.

In summary, in the training stage, a forest with m
completely random trees that have maximum height h
is produced from a training set D of normal samples.

3.2 Anomaly Detection with RecForest. This
section describes how we use the reconstructed sample
defined in RecForest for anomaly detection. To identify
anomalies, the key ideas used in RecForest are: (1) Each
bounding box in the forest contains at least a normal
sample from the training set. (2) The reconstructed
sample is always within the bounding boxes from the
forest and BD. (3) An anomaly is likely to be outside
the bound. Therefore, the center point of the bounding
box will be a poorly reconstructed sample for each
anomaly, leading to a large reconstruction error.

Here we provide formal definitions on the bounding
box for a given sample from a tree and from a forest;
the reconstructed sample; and the reconstruction error.
Notice that this process is the evaluating stage for a test
sample using a forest produced from the training stage.

Given a sample x, let A(x) be the set of all
attributes and their cut-offs used in the internal nodes
of a tree T along x’s traversal to a leaf node; and A(x)
be the set of attributes excluding those in A(x).

Definition 4. Given a completely random tree T
produced from D, the bounding box T(x) is determined
in combination with the bounding box BD as follows:

• For each attribute i in A(x), let the cut-offs ci of p
internal nodes that use attribute i for splitting be
ordered with respect to xi as follows:

LBD
i < c1i < · · · , cji ≤ xi < cj+1

i , · · · < cpi < UBD
i .

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



LeafLeaf

x1 > 0Leaf

Leaf x2 > 0.5

x2 > 0 Leaf

x1 > 1.5

Leaf Leaf

x2 > 0.5Leaf

Leafx1 > 0.5

x1 > 3Leaf

x2 > 1

YESNO

x = [1.3, 2]

Leaf Leaf

x2 > 2.5Leaf

Leafx1 > 0.5

x1 > 4Leaf

x2 > 1.5

YESNO YESNO

(a) Examples on completely random trees (b) Demonstration on sample reconstruction

0 4

4

Dimension 1

D
im

e
n

si
o

n
 2

0.5 1 1.5 3

0.5
1

1.5

2.5

2

Figure 1: Demonstration of sample reconstruction using a completely random forest. (a) The structure of
completely random trees in the forest. Decision paths of a given test sample x are bolded. (b) Bounding
boxes from trees {T1(x),T2(x),T3(x)}, and from the training data BD. The intersection area is colored red.

Then, the lower and upper bound of T(x) on
attribute i are defined as:

(3.3) L
T(x)
i = cji ≤ xi < cj+1

i = U
T(x)
i .

• For each attribute i in A(x), the i-th lower and
upper bound of T(x) are defined using BD:

(3.4) L
T(x)
i = LBD

i ; U
T(x)
i = UBD

i .

Since attributes in A(x) and A(x) cover all dimen-
sions in Rd, given a test sample x, its bounding box
T(x) then can be determined using the tree T .

Definition 5. Given a completely random forest
F with m trees. The bounding box F(x) is defined as
the intersection of bounding boxes Tı(x) from all trees:

(3.5) F(x) = ∩mı=1Tı(x).

Finding the intersection of bounding boxes from
all trees to produce F(x) is computationally efficient
because each bounding box is a rectangular box. For
example, the maximal-compatible rule can be used [6],
which scales linearly with the number of trees m and
the number of input dimensions d.

Definition 6. The reconstructed sample xrec of x
from the forest F is defined as the center point of the
bounding box F(x), i.e., ∀i = 1, . . . , d:

(3.6) xrec
i =

1

2

(
L
F(x)
i + U

F(x)
i

)
.

Definition 7. The reconstruction error for a test
sample x ∈ Rd and its reconstructed sample xrec is:

(3.7) s = (x− xrec)
>

(x− xrec) .

Algorithm 1: Evaluating Stage of RecForest

Input: Test sample x, Forest F
Output: Anomaly score s

1 F(x) = ∩mı=1Tı(x) ;

2 xrec = 1
2

(
LF(x) + UF(x)

)
;

3 s = (x− xrec)
>

(x− xrec) ;
4 Return s

The sample reconstruction error is then used as the
anomaly score in RecForest for each test sample. Fig. 1
presents a detailed example on sample reconstruction
with three completely random trees. We assume that
the bounding box BD as given is LBD = [0, 0] and
UBD = [4, 4], respectively. After passing the test
sample x = [1.3, 2] through three trees shown in Fig. 1
(a), a bounding box can be obtained per tree according
to equations (3.3) and (3.4). Concretely, we have:

LT1(x) = [0.0, 0.5], UT1(x) = [1.5, 4.0],

LT2(x) = [0.5, 1.0], UT2(x) = [3.0, 4.0],

LT3(x) = [0.5, 1.5], UT3(x) = [4.0, 2.5].

The intersection of three bounding boxes, colored
red in Fig. 1 (b), corresponds to the bounding box of
the forest F . The reconstructed sample is xrec = [1, 2],
and the corresponding reconstruction error is 0.09.

The procedure of scoring a test sample for anomaly
detection is given in Algorithm 1, and the entire process
of the training and evaluating stage is called RecForest.
Given a testing set consisting of normal samples and
anomalies with unknown labels, RecForest can be used
to provide a score for every test sample, and then they

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



can be ranked in the descending order. Samples ranked
at the top are regarded as anomalies.

Consider that the size of training/testing set is n
and t, and the maximum tree height h and the number
of trees m are both constants, the time complexity
of RecForest during the training and evaluating stage
is O(nmh) and O(tmh), respectively. Therefore, the
runtime of RecForest scales linearly with the data size.
In addition, RecForest can be easily parallelized through
exploiting the independency between trees in the forest.
In the supplementary materials, we provide further
discussions on the relationships between RecForest and
two related methods: the neural network autoencoder
and isolation forest.

3.3 RecForest for Outlying Aspects Mining.
Given the reconstructed sample in RecForest, here we
show a new capability of RecForest which is not usually
available in existing forest-based anomaly detectors, i.e.,
identifying outlying attributes of an anomaly with re-
spect to the given dataset. The outlying attributes sig-
nificantly enhance the interpretability of the anomaly.

Definition 8. The outlying score of each attribute
i = 1, . . . , d for a test sample x and its reconstructed
sample xrec is defined as follows:

(3.8) Oi =
exp (xi − xrec

i )
2∑d

k=1 exp (xk − xrec
k )

2
.

Equation (3.8) normalizes the discrepancies be-
tween x and xrec on all attributes into a distribution,
and attributes with large Oi indicate that they are more
outlying ones. These attributes can be used to explain
what makes an anomaly stand out from the training set.
Identifying outlying attributes in this way is efficient in
that they are directly inferred based on the reconstruc-
tion error on each attribute.

4 Experimental Settings

Dataset: We use 11 benchmark datasets for perfor-
mance comparison. They are selected for two reasons:
(1) All of them are commonly used in the literature of
anomaly detection. (2) They are publicly available at
Outlier Detection DataSets (ODDS)1.

Baseline: We use reconstruction-based, forest-
based, and traditional anomaly detectors as baselines:
(1) Deep Autoencoder: Neural network autoen-
coder with nonlinear dimensionality reduction. The
reconstruction error is used as the anomaly score [1];
(2) VAE: Variational autoencoder is a neural net-
work based generative model that maximizes the likeli-

1http://odds.cs.stonybrook.edu

hood of training data on its latent distribution [5]; (3)
DAGMM: An anomaly detector based on the variant
of neural network autoencoder, where a deep autoen-
coder and a gaussian mixture model are jointly trained
[21]; (4) iForest: Isolation forest is a popular forest-
based anomaly detector, which adopts average tree path
length in the forest as the anomaly score [11]; (5) PID-
Forest: Another forest-based anomaly detector based
on a novel mechanism called partial identification [8];
(6) OC-SVM: A kernel-based method on estimating
the support of the distribution of normal data [14].

Training methodology: Since RecForest is a
reconstruction-based anomaly detector, we follow the
experiment setting with clean training data [3, 21].
Concretely, 60% of normal samples are selected by
random sampling as the training set, and the rest 40%
are mixed up with all anomalies as the testing set.

For the baseline methods, their hyper-parameter
settings either use the default values or are determined
via a grid search for a range of values. The details are
provided in the supplementary materials. For RecFor-
est, the number of trees is set as 100, and each tree grows
until each leaf node contains precisely one training sam-
ple. Such a setting is purposely made to validate that
RecForest does not require extensive hyper-parameter
tuning like the neural network autoencoder.

In addition, we found that PIDForest failed to run if
all training samples take the same value on a dimension.
Therefore, such dimensions were removed in a dataset
when evaluating PIDForest.

Evaluation metric: After the evaluating stage,
labels on the testing set are made available to compute
two performance measures: (1) AUC is the area un-
der the Receiver Operating Characteristic curve. (2)
Given K the number of anomalies in the testing set,
Precision@K is the percentage of authentic anomalies
among K test samples with the largest anomaly scores
produced by an anomaly detector. Each experiment is
evaluated over ten independent trials to report the av-
erage value and standard deviation.

5 Empirical Evaluation

The empirical evaluation aims to assess the relative
performance of RecForest and different methods on
anomaly detection, time efficiency, outlying aspects
mining, and abilities on handling irrelevant attributes.

The empirical evaluation is divided into five subsec-
tions. First, RecForest is compared with the contenders
on benchmark datasets. Second, the runtime of RecFor-
est is evaluated. In the third and fourth experiments,
we demonstrate the advantages of RecForest on mining
outlying attributes and handling irrelevant attributes,
respectively. The last experiment studies the sensitiv-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Table 2: Average AUC (%) with standard deviation per method. Brackets in the first column denote the data
size N . Deep AE is short for the Deep AutoEncoder. The best results on datasets are indicated by (•).

Dataset (N) Deep AE [1] DAGMM [21] VAE [5] OC-SVM [14] PIDForest [8] iForest [11] RecForest

glass (214) 60.08±4.22 69.54±11.42 57.32±2.95 45.66±1.59 68.80±3.90 74.57±3.20 • 77.70±3.56
ionosphere (351) 90.76±1.70 79.21±8.72 83.74±1.68 92.75±1.22 82.44±3.64 91.98±2.24 • 96.57±0.63

wbc (378) 94.10±0.75 78.07±12.50 93.43±0.90 • 95.53±0.86 95.14±0.75 95.28±1.26 95.31±1.42
vowels (1456) 62.43±1.08 58.22±10.95 62.61±0.86 82.33±0.75 73.04±1.34 76.85±2.83 • 83.53±2.94
letter (1600) 52.47±1.09 53.62±4.16 52.36±0.86 52.37±0.75 63.41±1.74 63.17±2.14 • 65.60±1.58
musk (3062) • 100.0±0.00 92.15±8.27 • 100.0±0.00 • 100.0±0.00 • 100.0±0.00 94.63±5.58 • 100.0±0.00

optdigits (5216) 56.60±0.82 38.26±17.11 52.37±0.62 68.79±0.91 • 87.43±3.24 81.03±3.13 86.69±1.63
satimage-2 (5803) 97.88±0.04 78.38±16.70 97.75±0.04 99.66±0.01 82.22±7.30 99.43±0.10 • 99.71±0.12

satellite (6435) 66.65±0.23 65.56±10.71 64.95±0.26 72.60±0.25 53.08±3.07 80.34±1.42 • 81.54±0.83
pendigits (6870) 94.25±0.26 74.94±12.41 93.76±0.25 • 97.85±0.17 95.92±0.05 96.87±0.95 95.38±0.61

shuttle (49097) 99.32±0.04 83.70±17.58 99.04±0.02 99.28±0.03 93.07±10.73 99.31±0.09 • 99.38±0.15

Table 3: Average Precision@K (%) with standard deviation per method. Brackets in the first column denote the
data size N . Deep AE is short for the Deep AutoEncoder. The best results on datasets are indicated by (•).

Dataset (N) Deep AE [1] DAGMM [21] VAE [5] OC-SVM [14] PIDForest [8] iForest [11] RecForest

glass (214) 15.55±9.37 15.55±13.91 13.33±7.03 15.55±5.74 11.11±7.41 15.55±7.77 • 18.89±7.50
ionosphere (351) 83.10±2.77 71.11±25.38 77.86±2.41 86.19±1.60 62.43±6.57 85.56±3.26 • 92.06±1.35

wbc (378) 69.05±4.63 44.29±18.92 66.67±3.18 68.57±4.02 69.05±3.37 • 71.91±3.51 70.00±2.30
vowels (1456) 21.20±2.53 17.40±11.51 21.40±2.32 40.60±1.26 28.66±4.84 28.40±5.15 • 40.68±3.77
letter (1600) 16.70±1.77 20.40±5.06 16.10±1.29 21.70±2.11 17.50±2.27 20.70±3.37 • 37.76±5.00
musk (3062) • 100.0±0.00 55.57±34.03 • 100.0±0.00 • 100.0±0.00 • 100.0±0.00 57.44±21.37 • 100.0±0.00

optdigits (5216) 0.67±0.00 1.40±1.76 0.67±0.00 8.47±0.32 30.60±9.18 16.13±6.22 • 33.89±5.26
satimage-2 (5803) 85.92±1.15 22.68±27.31 84.23±1.11 • 93.81±0.98 52.69±12.04 88.03±1.37 91.41±1.40

satellite (6435) 63.14±0.13 63.71±8.33 62.01±0.20 68.16±0.06 51.21±1.64 71.37±1.27 • 76.32±0.71
pendigits (6870) 47.44±1.51 19.30±15.60 45.13±1.18 • 68.33±2.50 50.29±3.03 58.50±6.59 58.53±4.21

shuttle (49097) 96.13±0.11 66.19±30.74 95.64±0.08 95.67±0.27 82.56±11.31 96.73±0.73 • 96.82±0.48

ity of hyper-parameters in RecForest.
An efficient implementation of RecForest along with

the supplementary material are publicly available2.

5.1 Anomaly Detection Accuracy. The experi-
mental results are presented in Tables 2 and 3 in terms of
AUC and Precision@K, respectively. Both tables show
that on most benchmark datasets, RecForest achieves
better performance than other contenders.

Although RecForest and neural network autoen-
coder are both reconstruction-based anomaly detectors,
RecForest is almost always better than the autoencoder.
RecForest is also a better reconstruction-based anomaly
detector especially on small datasets, winning by a large
margin over other reconstruction-based methods. In
addition, the variant of neural network autoencoder,
i.e., DAGMM, suffers from large variance on several
datasets. The reason for the better performance of Rec-
Forest lies in its different mechanism of anomaly detec-
tion. Experiments in the supplementary material show
that RecForest is able to provide a much larger recon-
struction gap between normal data and anomalies.

2https://github.com/xuyxu/RecForest

RecForest also achieves better performance than
other forest-based anomaly detectors on most datasets
with small variance. Considering that RecForest and
iForest are both built on a completely random forest,
such results validate that exploiting information in the
forest is helpful on improving the detection accuracy.

5.2 Runtime Comparison. Here we compare the
runtime of RecForest with iForest, PIDForest, and the
neural network autoencoder. The goal is to verify that
RecForest has small computational cost.

For autoencoder, we report results when it is trained
on either CPU or GPU. For iForest, PIDForest, and
RecForest, the number of trees used is 100; and their
training and evaluating stages are parallelized on CPU.
Concretely, all processes in CPU are used for the
construction and inference on trees, and each process
focuses on the routine of one tree at a time. Table
4 presents the training and total runtime of different
methods on a randomly selected dataset: pendigits.
The results on other datasets have similar trends.

The training cost of iForest and RecForest are
the smallest, as each internal node in the completely
random tree randomly selects an attribute and cut-off

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Table 4: Runtime in seconds on pendigits dataset.
Model (Device) Training (s) Total (s)

Autoencoder (CPU) 62.2 62.5
Autoencoder (GPU) 32.5 32.6

PIDForest (CPU) 7.5 9.0
iForest (CPU) 0.4 1.8

RecForest (CPU) 0.3 2.1

for splitting. Training PIDForest is more expensive as a
splitting criterion is used to find splits for internal nodes.
Training the neural network autoencoder also has large
training cost because of the iterative optimization on
network parameters. The evaluating time of RecForest
is 1.8 seconds on the pendigits dataset, which is close
to that of iForest. Although the evaluating time of
forest-based methods is larger, the overall runtime of
RecForest and iForest is still the smallest, more than
one order of magnitude faster than the autoencoder.

5.3 Mining Outlying Attributes. This section
aims to evaluate the capability of RecForest on finding
meaningful outlying attributes given an anomaly.

First experiment: We use the KDD Cup’99
dataset that contains 97,278 samples with normal net-
work connections and 396,743 samples with different
kinds of network attack. We produce RecForest using
all normal samples, and the aim is to identify outlying
attributes for samples belonging to each kind of network
attack. The results are presented in Fig. 2.

Using the guess passwd attack as an example,
the key outlying attribute identified by RecForest is
num failed logins. This result conforms to the do-
main knowledge that a guess passwd attack is con-
ducted by guessing the login password of user accounts.

ba
ck

bu
ffe

r_o
ve

rfl
ow

ftp
_w

rit
e

gu
es

s_
pa

ss
wd

im
ap

ips
we

ep lan
d

loa
dm

od
ule

m
ult

iho
p

ne
pt

un
e

nm
ap pe
rl ph
f

po
d

po
rts

we
ep

ro
ot

kit
sa

ta
n

sm
ur

f
sp

y
te

ar
dr

op
wa

re
zc

lie
nt

wa
re

zm
as

te
r

duration
src_bytes
dst_bytes

wrong_fragment
urgent

hot
num_failed_logins

num_compromised
root_shell

su_attempted
num_root

num_file_creations
num_shells

num_access_files
num_outbound_cmds

Figure 2: Verification on the KDD Cup’99 dataset,
each row corresponds to an attribute, and each column
corresponds to one kind of network attack. Darker grids
indicate larger anomalousness identified by RecForest.

Table 5: Comparisons between RecForest, Autoen-
coder, and Beam Search with isolation forest on a
benchmark dataset for outlying aspects mining.

ID Ground Truth RecForest AE Beam

1 {8, 9} {8, 9} {8, 9} {8, 9}
2 {0, 1} {0, 1} {0, 1} {0, 1}
3 {6, 7} {6, 7} {6, 7} {6, 7}
4 {0, 1} {1, 2} {1, 7} {0, 1}
5 {2, 3, 4, 5} {1, 2, 3, 5} {1, 3, 5, 8} {2, 3, 4, 5, 8}
6 {2, 3, 4, 5} {2, 3, 4, 5} {0, 2, 3, 4} {2, 5}
7 {8, 9} {8, 9} {8, 9} {8, 9}
8 {0, 1} {0, 1} {0, 1} {0, 1}
9 {0, 1} {0, 1} {0, 1} {0, 1}

10 {2, 3, 4, 5} {0, 2, 4, 8} {0, 2, 4, 8} {0, 7}
11 {2, 3, 4, 5} {2, 3, 4, 7} {2, 3, 4, 7} {2, 3, 4, 5}
12 {8, 9} {8, 9} {6, 9} {8, 9}
13 {2, 3, 4, 5} {0, 3, 4, 7} {0, 3, 4, 7} {0, 2, 3, 5, 9}
14 {6, 7} {6, 7} {6, 7} {6, 7}
15 {6, 7} {6, 8} {6, 7} {6, 7}
16 {6, 7} {6, 7} {6, 7} {6, 7}
17 {8, 9} {5, 9} {5, 9} {8, 9}
18 {8, 9} {8, 9} {8, 9} {8, 9}

Count on Hitting 11/18 10/18 14/18
Overall Runtime (s) 0.3 8.7 55.7

Second experiment: We follow [17] to use the
same synthetic dataset to evaluate the ability of Rec-
Forest on mining outlying attributes. The synthetic
dataset contains 981 normal samples and 18 anoma-
lies in R10. In addition, ground truths on outlying at-
tributes of each anomaly are available. Two contenders
are included: (1) AutoEncoder (AE), which uses a neu-
ral network autoencoder to score the anomalousness of
attributes; (2) Beam, a state-of-the-art outlying aspect
miner that combines a beam search with the anomaly
score of iForest to find outlying attributes [17]. The
maximum number of attributes searched and the beam
width in Beam are set as 5 and 200, respectively.

The result is presented in Table 5. For RecForest
and Autoencoder, since they score each attribute, we
report the top-K outlying attributes for each anomaly,
where K is the actual number of outlying attributes.

The results show that Beam successfully identified
outlying attributes for 14 anomalies; RecForest and Au-
toencoder identified correctly for 11 and 10 anomalies,
respectively. This result is not surprising considering
that Beam conducts a systematic search on subspaces.

Note that the overall time cost of RecForest is one to
two orders of magnitude faster than the two contenders.
The runtime complexity of Beam search on mining out-
lying aspects for an anomaly in a d-dimensional dataset
is O(d2 + wddmax), where w and dmax are the beam
width and the maximum number of subspace dimen-
sions, respectively. In contrast, the overall time com-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



20 40 60 80 100
Number of Input Dimensions

0

100

200

300

400

R
un

tim
e 

R
at

io
 to

 R
ec

Fo
re

st RecForest
Autoencoder
Beam

0 100 200 300 400 500
Size of the Reference Dataset

2

4

6

8

RecForest
Autoencoder
Beam

Figure 3: Runtime ratio wrt RecForest when increasing
the number of dimensions and reference dataset size.

plexity of finding outlying attributes with RecForest is
equivalent to fitting a RecForest model and obtaining
the reconstructed sample for the given anomaly. There-
fore, the number of input dimensions d has a small im-
pact on the time cost of RecForest.

Scale-up tests: To further examine the time effi-
ciency of RecForest, we conduct two scale-up tests on
increasing the number of input dimensions and the size
of the reference dataset. The runtime ratios wrt Rec-
Forest presented in Fig. 3 show that RecForest is orders
of magnitude faster than Beam as the number of di-
mensions increasing. RecForest has the highest runtime
efficiency as the size of reference dataset increases.

5.4 Robustness against Irrelevant Attributes.
This section aims to validate that despite RecForest
and iForest are both based on a completely random
forest, fully exploiting information in the forest enables
RecForest to have stronger robustness against irrelevant
attributes when handling high-dimensional datasets.

First, a synthetic dataset with 1000 dimensions is
generated following the setting in [2]. For each sample,
r percentage of attributes are relevant attributes while
remaining attributes are noise. The details of the
synthetic dataset are available in the supplementary
material. Second, we increase the percentage of relevant
attributes r from 1% to 50%.

Fig. 4 presents the results of RecForest and iFor-
est with different sub-sampling sizes (“Full” indicates
no sub-sampling) in terms of AUC and Precision@K.
It shows that RecForest is much more robust against
irrelevant attributes than iForest. Concretely, RecFor-
est achieves AUC=1.0 when the percentage of relevant
attributes r increases to 10%. The same thresholds are
41% and 28% when the sub-sampling size of iForest is
set to 256 and “Full”, respectively.

A large sub-sampling size effectively increases the
average depth of decision tree in iForest, resulting in
more attributes being used to identify anomalies (espe-
cially the relevant attributes). This explains why iForest

0 10 20 30 40 500.4

0.6

0.8

1.0

AU
C

iForest (256)
iForest (1024)
iForest (Full)
RecForest

0 10 20 30 40 50
Percentage of Relevant Attributes

0.1

0.4

0.7

1.0

Pr
ec

is
io

n@
K

iForest (256)
iForest (1024)
iForest (Full)
RecForest

Figure 4: AUC and Precision@K of RecForest, iForest
when increasing the percentage of relevant attributes.

without sub-sampling has slightly better performance
than that with sub-sampling sizes 256 and 1024 when
handling irrelevant attributes. Nevertheless, the overall
performance of RecForest is still much better. Despite
using the same completely random forest, RecForest is
more robust against irrelevant attributes in that infor-
mation on splitting attributes of internal nodes is incor-
porated into the anomaly detection process. Concretely,
the error defined in Equation (3.7) can be decomposed
into relevant and irrelevant components as follows:

l(x,xrec) =
∑
j∈A1

(xj − xrec
j )2 +

∑
k∈A2

(xk − xrec
k )2,

where A1 and A2 denote the sets of relevant and
irrelevant attributes of the dataset, respectively.

It turns out that using RecForest, the reconstruc-
tion error of anomalies on relevant attributes A1 remains
much larger than normal data, whereas their differences
on irrelevant attributes A2 are small. Therefore, irrele-
vant attributes have little impacts on RecForest as long
as they corrupt “equally” to both anomalies and normal
data. However, this cannot be identified using iForest
because it does not incorporate information on the used
splitting attributes, all attributes therefore contribute
equally to its anomaly score: tree path length.

5.5 Parameter Sensitivity. In this section, we
study the sensitivity of two hyper-parameters in RecFor-
est: tree depth and the number of trees. Three datasets
are used: wbc, letter, and pendigits. For the tree depth,
we increase its value from 3 to 30 with a step size 3. For
the number of trees, we increase its value from 20 to 200
with a step size 20.

Fig. 5 presents the trends on average AUC and

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



3 6 9 12 15 18 21 24 27 30

Maximum Tree Depth

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

wbc
letter
pendigits

20 40 60 80 100 120 140 160 180 200

Number of Decision Tree
0.6

0.7

0.8

0.9

1.0

wbc
letter
pendigits

Figure 5: Parameter sensitivity of RecForest.

standard deviation over 10 independent trails. First, the
result shows that a better performance can be achieved
by increasing the tree depth. When the data size is
large, a higher tree depth is recommended to better
capture information about the dataset. Second, the
performance of RecForest converges quickly with a small
number of trees. On all datasets, the performance does
not improve or deteriorate when the number of trees is
higher than 100. It can also be observed that increasing
the values of two hyper-parameters both leads to a
smaller standard deviation.

6 Conclusion

This paper proposes a novel reconstruction-based
anomaly detector called RecForest. Unlike existing
works that universally adopt the neural network autoen-
coder, RecForest is built on a completely random forest;
and the sample reconstruction is established by exploit-
ing the intersection of the bounding boxes in the forest
for each sample.

It has three advantages over existing anomaly de-
tectors. First, RecForest has significantly fewer hyper-
parameters and smaller training cost compared with the
neural network autoencoder. As a result, RecForest can
be applied to large scale datasets that would otherwise
be impossible for neural network autoencoder. Second,
RecForest fully exploits the information in the forest
and achieves two new capabilities not available in ex-
isting forest-based methods, i.e., RecForest can effec-
tively mine outlying attributes and handle irrelevant at-
tributes in high-dimensional datasets. Third, in terms
of mining outlying attributes, RecForest runs orders
of magnitude faster than the existing outlying aspects
miner using Beam search.

Acknowledgement. This research was supported by
the National Science Foundation of China (61921006).

The authors would like to thank Peng Zhao and
Yu-Cheng He for helpful discussions, and thank the
anonymous reviewers for their valuable comments.

References

[1] C. C. Aggarwal, “Outlier analysis,” Springer, 2017.
[2] T. R. Bandaragoda, K.-M. Ting, D. Albrecht, F.-T.

Liu, Y. Zhu et al., “Isolation-based anomaly detection
using nearest-neighbor ensembles,” Computational In-
telligence, vol. 34, no. 4, pp. 968-998, 2018.

[3] J.-H. Chen, S. Sathe, C. C. Aggarwal and D. Turaga,
“Outlier detection with autoencoder ensembles,” in
SDM, 2017, pp. 90-98.

[4] R. Chalapathy and S. Chawla, “Deep learning for
anomaly detection: A survey,” arXiv:1901.03407, 2019.

[5] D. P. Kingma, M. Welling, “Auto-encoding variational
bayes,” arXiv:1312.6114, 2013.

[6] J. Feng and Z.-H. Zhou, “Autoencoder by forest,” in
AAAI, 2018, pp. 2967-2973.

[7] J. Feng, Y. Yu and Z.-H. Zhou, “Multi-layered gradient
boosting decision trees,” in NeurIPS, 2018, pp. 3551-
3561.

[8] P. Gopalan, V. Sharan and U. Wieder, “PIDFor-
est: Anomaly detection via partial identification,” in
NeurIPS, 2019, pp. 15783-15793.

[9] S. Guha, N. Mishra, G. Roy, O. Schrijvers, “Ro-
bust random cut forest based anomaly detection on
streams,” in ICML, 2016, pp. 2712-2721.

[10] G.-T. Pedro, D.-V. Jesus, M.-F. Gabriel and V. En-
rique, “Anomaly-based network intrusion detection:
Techniques, systems and challenges,” Computers and
Security, vol. 28, no. 1-2, pp. 18-28, 2009.

[11] F.-T. Liu, K.-M. Ting and Z.-H. Zhou, “Isolation
forest,” in ICDM, 2008, pp. 413-422.

[12] S.-H. Lyu, L. Yang and Z.-H. Zhou, “A refined mar-
gin distribution analysis for forest representation learn-
ing,” in NeurIPS, 2019, pp. 5531-5541.

[13] B. Micenková, R. T. Ng, X.-H. Dang, and I. As-
sent, “Explaining outliers by subspace separability,” in
ICDM, 2013, pp. 518–527.

[14] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-
Taylor and J. C. Platt, “Support vector method for
novelty detection,” in NIPS, 2000, pp. 582-588.

[15] D. Samariya, J. Ma, S. Aryal and K.-M. Ting, “A com-
prehensive survey on outlying aspect mining methods,”
arXiv: 2005.02637, 2020.

[16] C. Vens, F. Costa, “Random forest based feature
induction,” in ICDM, 2011, pp. 744-753.

[17] N. X. Vinh, J. Chan, S. Romano, J. Bailey, C. Leckie,
et al., “Discovering outlying aspects in large datasets,”
Data Mining and Knowledge Discovery, vol. 30, no. 6,
pp. 1520-1555, 2016.

[18] Z.-H. Zhou, “Ensemble methods: Foundations and
algorithms,” CRC press, 2012.

[19] Z.-H. Zhou and J. Feng, “Deep Forest: Towards an
alternative to deep neural networks,” in IJCAI, 2017.

[20] Z.-H. Zhou and J. Feng, “Deep Forest,” National
Science Review, vol. 6, no. 1, pp. 74-86, 2018.

[21] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu
et al., “Deep autoencoding gaussian mixture model for
unsupervised anomaly detection,” in ICLR, 2018.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited


