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Deep neural networks often come with a huge
number of parameters, even larger than the num-
ber of training examples, but it seems that these
over-parameterized models have not suffered from
overfitting. This is quite strange and why over-
parameterization does not overfit? poses a funda-
mental question concerning the mysteries behind
the success of deep neural networks.

In conventional machine learning theory, let H
denote the hypothesis space, m is the size of a
training set with i.i.d. samples, then the gap be-
tween the generalization error and empirical er-
ror is often bounded by O(+/|H|/m) where |H| is
about the hypothesis space complexity. If the w-
hole hypothesis space represented by a deep neural
network is considered, then the numerator grows
with the parameter count (depth x width), which
can be even larger than the denominator, leading
to vacuous bounds. Thus, many studies resort-
ed to consider relevant subset of hypothesis space,
e.g., by introducing implicit bias depending on spe-
cific algorithms such as the norms controlled by s-
tochastic gradient descent (SGD) [6,7]. The result-
s, however, were not that satisfactory and recently
there were even claims that conventional learning
theory could not be used to explain generalization
of deep neural networks even if the implicit bias of
specific algorithms had been taken into account to
the fullest extent possible [5].

Although many arguments may have their own
groundings, we feel that an important fact should
be noticed; that is, conventional learning theory
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concerns mostly about the training of a learner, or
more specifically, a classifier in classification tasks,
from a feature space, but concerns little about the
construction of the feature space itself. Therefore,
conventional learning theory can be exploited to
understand the behavior of generalization, but one
must be careful when it is applied to representa-
tion learning.

It is well-known that deep neural networks ac-
complish end-to-end learning through integrating
feature learning with classifier training. As illus-
trated in Figure 1(a), a deep neural network can
be decomposed into two parts, where the first part
devotes to feature space transformation, i.e., con-
verting the original feature space represented by
the input layer to the final feature space repre-
sented by the final representation layer, in which
a classifier is constructed.

First, let’s focus on the CC part in Figure 1(a),
where the number of parameters depends on the
number of units in the final representation lay-
er. It is well-known that there occurs overfitting
if the number of parameters is more than need-
ed [3,4]. For example, Figure 1(b) depicts a typical
training-testing performance plot based on result-
s presented in [3], which shows that the testing
performance degrades although the training per-
formance increases as the number of parameters
becomes too large. This exhibits clearly that for
the CC part in Figure 1(a), over-parameterization
can lead to overfitting; this confirms with what
conventional learning theory tells.
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(a) A decompositional view of deep neural networks; (b) A typical performance plot showing that over-

parameterization of the CC part can lead to overfitting (replot based on experimental results presented in [3]); (¢) A
typical performance plot which shows that over-parameterization of FST does not necessarily lead to overfitting.

Next, let’s focus on the FST part in Figure 1(a).
Most doubts about the incapability of conventional
learning theory on deep neural networks actually
come from the fact that there seems no overfitting
even when the parameter count (depth x width)
is very large [5-7]. Here, we want to point out that
the parameters of the FST part should not be sim-
ply regarded as parameters of the hypothesis space
concerned by conventional learning theory. In fac-
t, when we say that conventional learning theory
tells us over-parameterization will lead to overfit-
ting, the parameters refer to those concerning the
hypothesis space, such as the parameters of the C-
C part; as for parameters for feature space trans-
formation, conventional learning theory does not
claim anything. Indeed, the connection between
overfitting and the parameterization of feature s-
pace transformation has rarely been theoretically
studied before, and thus, there is no theory con-
cludes that over-parameterization of feature space
transformation will lead to overfitting; this applies
to not only deep neural networks but also other
feature space transformation techniques.

Take distance metric learning [2] for example.
It is able to transform the original feature space
to a “better” feature space in which a relatively
simple classifier can solve a problem that can be
hard in the original feature space, just like the F-
ST part in deep neural networks transforming the
feature space such that an originally complicated
task can be addressed by a simple fully-connected
linear layer.

Given a training set {(x1,91),. .., (@m, ym)}, let
M and C denote the must-link and cannot-link
constraints, respectively. These constraints can
be extracted from the data; for example, a pair

of examples falling into the same class leads to the
extraction of a must-link constraint, and otherwise
a cannot-link constraint. The well-known distance
metric learning algorithm [1] attempts to solve the
following problem:

min dLD(M,I
M

where ||z; —x;||3; is the Mahalanobis distance be-
tween x; and ; based on the positive semi-definite
metric matrix M; dpp(M,I) is the log-det diver-
gence between M and identity matrix I; Eq. 1 de-
mands the must-link examples to be close, with
pairwise distances smaller than u; Eq. 2 demands
the cannot-link examples to be faraway, with pair-
wise distances larger than [. Assume that strong
duality holds and consider the Lagrange dual form,
the solution is:
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where a € R is the dual parameter corresponding
to the positive semi-definite constraint, A;; > 0
and p;x = 0 are parameters in the dual form cor-
responding to the must-link and cannot-link con-
straints, respectively. It is evident that the num-
ber of parameters can be large, even larger than
the number of training examples, by simply ex-
tracting more constraints from the training data.
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Using a linear classifier in the transformed feature
space, Figure 1(c) presents a typical performance
plot which shows that the influence of the number
of parameters on the testing performance is non-
monotonic. More importantly, this breast-cancer
data set has 450 training examples (and 233 test-
ing examples) whereas the numbers of parameters
showing in Figure 1(c) are much larger; it is ob-
servable that the training and testing curves are
quite consistent, implying that overfitting does not
occur even when the number of parameters is larg-
er than the number of training examples.

In summary, we want to indicate that when
conventional learning theory concludes that over-
parameterization leads to overfitting, the param-
eters concerned are about hypothesis space from
which the classifiers are constructed; in deep neu-
ral networks such parameters are those of the CC
Part in Figure 1(a). As for FST parameters, there
was no such claim; this applies to not only deep
neural networks but also other feature space trans-
formation techniques. Thus, an important future
direction is to rigorously study the influence of the
number of parameters on the performance of fea-
ture space transformation, ideally by establishing
learning theory about feature space transforma-
tion, and this may shed light on further under-
standing of mysteries behind deep neural network-
S.
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