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Abstract

Recently, there has been a growing research interest in the analysis of dynamic
regret, which measures the performance of an online learner against a sequence
of local minimizers. By exploiting the strong convexity, previous studies have
shown that the dynamic regret can be upper bounded by the path-length of the
comparator sequence. In this paper, we illustrate that the dynamic regret can be
further improved by allowing the learner to query the gradient of the function
multiple times, and meanwhile the strong convexity can be weakened to other
non-degenerate conditions. Specifically, we introduce the squared path-length,
which could be much smaller than the path-length, as a new regularity of the
comparator sequence. When multiple gradients are accessible to the learner, we
first demonstrate that the dynamic regret of strongly convex functions can be upper
bounded by the minimum of the path-length and the squared path-length. We then
extend our theoretical guarantee to functions that are semi-strongly convex or self-
concordant. To the best of our knowledge, this is the first time that semi-strong
convexity and self-concordance are utilized to tighten the dynamic regret.

1 Introduction

Online convex optimization is a fundamental tool for solving a wide variety of machine learning
problems [Shalev-Shwartz, 2011]. It can be formulated as a repeated game between a learner and
an adversary. On the ¢-th round of the game, the learner selects a point x; from a convex set X
and the adversary chooses a convex function f; : X — R. Then, the function is revealed to the
learner, who incurs loss f;(x;). The standard performance measure is the regret, defined as the
difference between the learner’s cumulative loss and the cumulative loss of the optimal fixed vector
in hindsight:

T T
> fil) —min Y fi(x). ()
t=1 t=1

Over the past decades, various online algorithms, such as the online gradient descent [Zinkevich,
2003], have been proposed to yield sub-linear regret under different scenarios [Hazan et all, 2007,
Shalev-Shwartz et alJ, 2007].

Though equipped with rich theories, the notion of regret fails to illustrate the performance of on-
line algorithms in dynamic setting, as a static comparator is used in (I). To overcome this limita-
tion, there has been a recent surge of interest in analyzing a more stringent metric—dynamic regret
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[Hall and Willett, 2013, Besbes et alJ,2015,Jadbabaie et al),2015,Mokhtari et alJ,2016,[Yang et all,
2016], in which the cumulative loss of the learner is compared against a sequence of local minimi-
Zers, 1.€.,

T T T T
R} :=R(x},...,x7) = th(xt) - th(xf) = th(xt) - Z)Iggg fe(x) 2)
t=1 t=1 t=1 t=1

where x; € argmin,c, f;(x). A more general definition of dynamic regret is to evaluate the
difference of the cumulative loss with respect to any sequence of comparators uy,...,ur € X
[Zinkevich, 2003].

It is well-known that in the worst-case, it is impossible to achieve a sub-linear dynamic regret bound,
due to the arbitrary fluctuation in the functions. However, it is possible to upper bound the dynamic
regret in terms of certain regularity of the comparator sequence or the function sequence. A natural
regularity is the path-length of the comparator sequence, defined as

T
Pii= P, oxp) = 3 % = x| ®
t=2

that captures the cumulative Euclidean norm of the difference between successive comparators. For
convex functions, the dynamic regret of online gradient descent can be upper bounded by O (v/T' Pr)

[Zinkevich, 2003]. And when all the functions are strongly convex and smooth, the upper bound can
be improved to O(P7) [Mokhtari et all, 2016].

In the aforementioned results, the learner uses the gradient of each function only once, and performs
one step of gradient descent to update the intermediate solution. In this paper, we examine an
interesting question: is it possible to improve the dynamic regret when the learner is allowed to
query the gradient multiple times? Note that the answer to this question is no if one aims to promote
the static regret in (1), according to the results on the minimax regret bound [Abernethy et al.,2008a].
We however show that when coming to the dynamic regret, multiple gradients can reduce the upper
bound significantly. To this end, we introduce a new regularity—the squared path-length:

T
S = S(xise o xp) = > lIxi = x|l “4)
t=2

which could be much smaller than P7 when the local variations are small. For example, when

xi —x;_4| = Q(1/VT) for all t € [T], we have Pi = Q(v/T) but S = Q(1). We advance the
analysis of dynamic regret in the following aspects.

e When all the functions are strongly convex and smooth, we propose to apply gradient des-
cent multiple times in each round, and demonstrate that the dynamic regret is reduced from
O(P3) to O(min(P;, S5)), provided the gradients of minimizers are small. We further
present a matching lower bound which implies our result cannot be improved in general.

e When all the functions are semi-strongly convex and smooth, we show that the standard
online gradient descent still achieves the O(P;.) dynamic regret. And if we apply gra-
dient descent multiple times in each round, the upper bound can also be improved to
O(min(P;., S5)), under the same condition as strongly convex functions.

e When all the functions are self-concordant, we establish a similar guarantee if both the
gradient and Hessian of the function can be queried multiple times. Specifically, we pro-
pose to apply the damped Newton method multiple times in each round, and prove an
O(min(P3, S)) bound of the dynamic regret under appropriate conditions]T

Application to Statistical Learning Most studies of dynamic regret, including this paper do not
make stochastic assumptions on the function sequence. In the following, we discuss how to inter-
pret our results when facing the problem of statistical learning. In this case, the learner receives a
sequence of losses £(x ' z1,y;), {(x " z2,92), . . ., where (z;,y;)’s are instance-label pairs sampled
from a unknown distribution, and ¢(+, -) measures the prediction error. To avoid the random fluctua-
tion caused by sampling, we can set f; as the loss averaged over a mini-batch of instance-label pairs.
As aresult, when the underlying distribution is stationary or drifts slowly, successive functions will
be close to each other, and thus the path-length and the squared path-length are expected to be small.

P% and S} are modified slightly when functions are semi-strongly convex or self-concordant.



2 Related Work

The static regret in (1) has been extensively studied in the literature [Shalev-Shwartz, 2011]. It has
been established that the static regret can be upper bounded by O(v/T), O(log T'), and O(log T)
for convex functions, strongly convex functions, and exponentially concave functions, respectively
[Zinkevich, 2003, [Hazan et all, 2007]. Furthermore, those upper bounds are proved to be minimax
optimal [Abernethy et al),[2008a, [Hazan and Kale, 2011]].

The notion of dynamic regret is introduced by [Zinkevich [2003]. If we choose the online gradient
descent as the learner, the dynamic regret with respect to any comparator sequence uy, ..., ur, i.e.,
R(uy,...,ur), is on the order of \/TP(ul, ...,ur). When a prior knowledge of Py is available,
the dynamic regret R, can be upper bounded by O(/T"P;.) [Yang et al),[2016]. If all the functions
are strongly convex and smooth, the upper bound of R’ can be improved to O(Py) [Mokhtari et al.,
2016]. The O(P;.) rate is also achievable when all the functions are convex and smooth, and all the
minimizers x;’s lie in the interior of X" [Yang et al., [2016].

Another regularity of the comparator sequence, which is similar to the path-length, is defined as

T
Pl(ula BERE) uT) = Z ”ut - (I)t(ut—l)”
t=2

where ®,(-) is a dynamic model that predicts a reference point for the ¢-th round. The advantage
of this measure is that when the comparator sequence follows the dynamical model closely, it can
be much smaller than the path-length P(uy,...,ur). A novel algorithm named dynamic mirror
descent is proposed to take ®;(u;_1) into account, and the dynamic regret R(uy, ..., ur) is on the
order of VTP’ (ui,...,ur) [Hall and Willett, 2013]. There are also some regularities defined in
terms of the function sequence, such as the functional variation [Besbes et al.,[2015]

T
Fri=Ffi,ofr) = 3 max|fi(x) = fa () ®
t=2

or the gradient variation [Chiang et al.,[2012]

T
Gr:=G(f1,---, fr) = Zi%a%{\\vft(X) ~ Vi (x)|%. ©
t=2

Under the condition that Fr < Fp and F; is given beforehand, a restarted online gradient descent
is developed by |Besbes et al! [2019], and the dynamic regret is upper bounded by O(TQ/ 3F%/ 3) and
O(log T\/TFr) for convex functions and strongly convex functions, respectively.

The regularities mentioned above reflect different aspects of the learning problem, and are not di-
rectly comparable in general. Thus, it is appealing to develop an algorithm that adapts to the smaller
regularity of the problem. Jadbabaie et al. [2015] propose an adaptive algorithm based on the opti-
mistic mirror descent [Rakhlin and Sridharan, 2013], such that the dynamic regret is given in terms
of all the three regularities (P, Fr, and G). However, it relies on the assumption that the learner
can calculate each regularity incrementally.

In the setting of prediction with expert advice, the dynamic regret is also referred to as tracking
regret or shifting regret [Herbster and Warmuth, 11998, [Cesa-bianchi et all, 2012]. The path-length
of the comparator sequence is named as shift, which is just the number of times the expert changes.
Another related performance measure is the adaptive regret, which aims to minimize the static regret
over any interval [Hazan and Seshadhri, 2007, Daniely et al., 2015]. Finally, we note that the study
of dynamic regret is similar to the competitive analysis in the sense that both of them compete
against an optimal offline policy, but with significant differences in their assumptions and techniques
[Buchbinder et al., 2012].

3 Online Learning with Multiple Gradients

In this section, we discuss how to improve the dynamic regret by allowing the learner to query the
gradient multiple times. We start with strongly convex functions, and then proceed to semi-strongly
convex functions, and finally investigate self-concordant functions.



Algorithm 1 Online Multiple Gradient Descent (OMGD)

Require: The number of inner iterations K and the step size n
1: Let x; be any point in X
2: fort=1,...,T do

3:  Submit x; € X and the receive loss f; : X — R
1

4: Z; = Xt
5 forj=1,...,Kdo
6:
2" =y (2 — 0V file))
7 end for
8: Xt41 = th+1
9: end for

3.1 Strongly Convex and Smooth Functions

To be self-contained, we provide the definitions of strong convexity and smoothness.
Definition 1. A function f : X — R is A-strongly convex, if

A
Fy) = f6) +(VF(x)y = %) + Sy = x[?, ¥,y € X,
Definition 2. A function f : X — R is L-smooth, if
L
F) < F) + (V) y =x) + Slly —x[* vx,y € .

Example 1. The following functions are both strongly convex and smooth.

1. A quadratic form f(x) = x' Ax —2b"x + cwhere al < A =< bl, a > 0and b < oo;
2. The regularized logistic loss f(x) = log(1 + exp(b'x)) + 3|/x||?, where A > 0.

Following previous studies [Mokhtari et all, 2016], we make the following assumptions.
Assumption 1. Suppose the following conditions hold for each f; : X — R.

1. fyis \-strongly convex and L-smooth over X’;
2. |IVAX)I <G vxeX.

When the learner can query the gradient of each function only once, the most popular learning
algorithm is the online gradient descent:

xi41 = Uy (x¢ — nV fi(x¢))

where ITy (-) denotes the projection onto the nearest point in X'. [Mokhtari et al! [201€] have esta-
blished an O(P}.) bound of dynamic regret, as stated below.

Theorem 1. Suppose Assumption[llis true. By setting 7 < 1/L in online gradient descent, we have

T 1 1
th(xt) — fi(x{) < ——GPr + ﬁGHxl —x;|
t=1

I e 1-
wherefyzq/lfl/i%.

We now consider the setting that the learner can access the gradient of each function multiple times.
The algorithm is a natural extension of online gradient descent by performing gradient descent mul-
tiple times in each round. Specifically, in the ¢-th round, given the current solution x;, we generate
a sequence of solutions, denoted by z}7 . 7zf( 1 where K is a constant independent from 7', as

follows:
7} = Xy, z{‘H =1IIx (zé —ant(z{)) ,7=1,... K.

Then, we set x;1 = zf{ 1. The procedure is named as Online Multiple Gradient Descent (OMGD)
and is summarized in Algorithm [l



By applying gradient descent multiple times, we are able to extract more information from each
function and therefore are more likely to obtain a tight bound for the dynamic regret. The following
theorem shows that the multiple accesses of the gradient indeed help improve the dynamic regret.

Theorem 2. Suppose Assumption[llis true. By setting n < 1/L and K = [1/;7;)‘ In4] in Algo-
rithm[l] for any constant o > 0, we have

2GPr + 2G||x1 — x7l,

th Xe) = filx) Smin g ST IVAGDI?

o 2L+ )8t + (L +a)lxi —x]*

When Zthl |V fi(x7)||? is small, Theorem 2l can be simplified as follows.
Corollary 3. Suppose ZZ;I |V fo(x)]|? = O(S}), from Theorem[2l we have

th x¢) — fi(x;) = O (min(Pr, 7)) -

In particular, if X} belongs to the relative interior of X (i.e., V fi(x;) = 0) for all t € [T'], Theorem[2
as o — 0, implies

Z fe(xe) = fo(x}) < min (2GP + 2G|x1 — X}, 2LS; + L||x1 — x}[?) .

Compared to Theorem [l the proposed OMGD improves the dynamic regret from O(Py) to
O (min (P}, S5.)), when the gradients of minimizers are small. Recall the definitions of P and
S5 in (@) and @), respectively. We can see that S introduces a square when measuring the diffe-
rence between x; and x;_;. In this way, if the local variations (||x; — x;_;||’s) are small, S can
be significantly smaller than P7, as indicated below.

Example 2. Suppose ||x; —x;_1||=T"7 forallt > 1 and T > 0, we have
8’;“+1 — T1—27— < P;le _ Tl—T.
In particular, when T = 1/2, we have Sy, = 1 < Pj ., = VT.

S’ is also closely related to the gradient variation in (6). When all the x;’s belong to the relative
interior of X, we have V f;(x;) = 0 for all ¢ € [T'] and therefore

T
Gr =Y IIVFilxi_y) = Ve (xi)? = levft x;_1) = VAP =2 XSy (D)

t=2

where the last inequality follows from the property of strongly convex functions [Nesterov, 2004].
The following corollary is an immediate consequence of Theorem 2] and the inequality in (7).

Corollary 4. Suppose Assumption[llis true, and further assume all the X ’s belong to the relative
interior of X . By settingm < 1/L and K = (1/;7;'>‘ In 4| in Algorithm[ll we have

2LGr

th x¢) — fi(x}) < min (ZGPT + 2G|x1 — X7, 2

Lk —x1|2)

In Theorem 2] the number of accesses of gradients K is set to be a constant depending on the
condition number of the function. One may ask whether we can obtain a tighter bound by using a
larger K. Unfortunately, according to our analysis, even if we take K = oo, which means f;(-) is
minimized exactly, the upper bound can only be improved by a constant factor and the order remains
the same. A related question is whether we can reduce the value of K by adopting more advanced
optimization techniques, such as the accelerated gradient descent [Nesterov, [2004]. This is an open
problem to us, and will be investigated as a future work.

Finally, we prove that the O(S) bound is optimal for strongly convex and smooth functions.



Theorem 5. For any online learning algorithm A, there always exists a sequence of strongly convex
and smooth functions f1, ..., fr, such that

T
i) = filx)) = Q(S7)

where X1, ..., X7 is the solutions generated by A.

Thus, the upper bound in Theorem 2] cannot be improved in general.

3.2 Semi-strongly Convex and Smooth Functions

During the analysis of Theorems[Tland 2] we realize that the proof is built upon the fact that “when
the function is strongly convex and smooth, gradient descent can reduce the distance to the optimal
solution by a constant factor” [Mokhtari et all, 2016, Proposition 2]. From the recent developments
in convex optimization, we know that a similar behavior also happens when the function is semi-
strongly convex and smooth [Necoara et al,[2015, Theorem 5.2], which motivates the study in this
section.

We first introduce the definition of semi-strong convexity [Gong and Ye, [2014].

Definition 3. A function f : X — R is semi-strongly convex over X, if there exists a constant 3 > 0
such that for any x € X

Fx) — min f(x) > 2 x — - () ®

where X* = {x € X : f(x) < mingex f(X)} is the set of minimizers of f over X.
The semi-strong convexity generalizes several non-strongly convex conditions, such as the quadratic

approximation property and the error bound property [Wang and Lin, 2014, Necoara et al),2015]. A
class of functions that satisfy the semi-strongly convexity is provided below [[Gong and Ye, 2014].

Example 3. Consider the following constrained optimization problem

i =g(E b’
JJuin f(x)=g(Ex)+b x

where g(-) is strongly convex and smooth, and X is either R? or a polyhedral set. Then, f : X — R
is semi-strongly convex over X with some constant 8 > 0.

Based on the semi-strong convexity, we assume the functions satisfy the following conditions.
Assumption 2. Suppose the following conditions hold for each f; : X — R.

1. fy is semi-strongly convex over X with parameter 3 > 0, and L-smooth;
2. IVAix)|| <G vx e X.

When the function is semi-strongly convex, the optimal solution may not be unique. Thus, we need
to redefine P; and S to account for this freedom. We define

T T
2
Pj =) max ang () ~ M, ()|, and S5 = >~ max HHX; (%) — My (%) H
t=2 t=2

where X} = {x € X : f;(x) < minxex f:(x)} is the set of minimizers of f; over X.

In this case, we will use the standard online gradient descent when the learner can query the gradient
only once, and apply the online multiple gradient descent (OMGD) in Algorithm[I] when the learner
can access the gradient multiple times. Using similar analysis as Theorems [Tl and 2] we obtain the
following dynamic regret bounds for functions that are semi-strongly convex and smooth.

Theorem 6. Suppose Assumptionlis true. By setting 7 < 1/L in online gradient descent, we have
T T
; felx) = 2 min fi(x)

where y = /1 — 1/"%/3 and x; = TlLy: (x1).

Gllx1 — x|

<G73T+
“1l—y 1—7v



Thus, online gradient descent still achieves an O(P;.) bound of the dynamic regret.

Theorem 7. Suppose Assumption 2 is true. By setting n < 1/L and K = fl/"TJFB In4) in Algo-
rithm[l] for any constant o > 0, we have

T T QG,P;“—FQGHXl —)_(1H
; folxe) — Zl min f,(x) < min { Gy,

e +2(L 4+ a)S; + (L + a)||x; — %4

2, and )_(1 = HXf (Xl).

where G = maX (o c x1 | S IV A<

Again, when the gradients of minimizers are small, in other words, G = O(S}.), the proposed
OMGD improves the dynamic regret form O(P5) to O(min(P7, S5)).

3.3 Self-concordant Functions

We extend our previous results to self-concordant functions, which could be non-strongly convex
and even non-smooth. Self-concordant functions play an important role in interior-point methods
for solving convex optimization problems. We note that in the study of bandit linear optimization
[Abernethy et al!, 2008b], self-concordant functions have been used as barriers for constraints. Ho-
wever, to the best of our knowledge, this is the first time that losses themselves are self-concordant.

The definition of self-concordant functions is given below [Nemirovski, 2004].

Definition 4. Let X be a nonempty open convex set in R and f be a C* convex function defined on
X. fis called self-concordant on X, if it possesses the following two properties:

1. f(x;) = oo along every sequence {x; € X} converging, as i — oo, to a boundary point
of X;
2. f satisfies the differential inequality

|D?f(x)[h, h, h]| < 2 (hT V2f(x)h)"
forallx € X and allh € R4, where

. 93
D3f(x)[hy, ho, hg] = ———— |1, —tpmts— tihy + toho + t3h3) .
f(x)[hy, hy, hs] ot 01,01 [ty =ts=ts=0f(x + t1hq + tohy + t3hs)
Example 4. We provide some examples of self-concordant functions  below
[Bovd and Vandenberghe, 2004, |INemirovski, 2004 ].

1. The function f(x) = — log x is self-concordant on (0, c0).

2. A convex quadratic form f(x) = x| Ax —2b"x+cwhere A € R4 b € R?, and c € R,
is self-concordant on R<.

3. If f : RY s R is self-concordant, and A € R¥* b € RY, then f(Ax + b) is self-

concordant.

Using the concept of self-concordance, we make the following assumptions.
Assumption 3. Suppose the following conditions hold for each f; : X — R.

1. fy is self-concordant on domain X;;
2. fi is non-degenerate on X, i.e., V2 fi(x) = 0, Vo € X,
3. fi attains its minimum on X;, and denote Xy = argmin, ¢ y, fi(x).

Our approach is similar to previous cases except for the updating rule of x;. Since we do not assume
functions are strongly convex, we need to take into account the second order structure when updating
the current solution x;. Thus, we assume the learner can query both the gradient and Hessian of each
function multiple times. Specifically, we apply the damped Newton method [Nemirovski, 2004] to
update x;, as follows:
. a1 .
Z%:Xh Zgjq:zg*# {V2ft(zﬁ)} Vft(zg),j:].,...,K

L+ Ai(z)

where

Mi(z}) = \/ V)T [V2Ae)] V). ©



Algorithm 2 Online Multiple Newton Update (OMNU)

Require: The number of inner iterations K in each round
1: Let x; be any point in A
2: fort=1,...,T do

3:  Submit x; € X and the receive loss f; : X — R
1

4 z; =Xy
5 forj=1,...,Kdo
6: 1 o
A . — [Vz zj} AT
t t 1+/\t(z§) ft( t) ft( t)
where \;(z]) is given in (@)
7 end for
8 Xi41 = Zg{+1
9: end for

Then, we set X441 = th 1. Since the damped Newton method needs to calculate the inverse of the
Hessian matrix, its complexity is higher than gradient descent. The procedure is named as Online
Multiple Newton Update (OMNU) and is summarized in Algorithm 21

To analyze the dynamic regret of OMNU, we redefine the two regularities P7. and S7. as follows:

T T
Pri= 3 It =il = D \/(xF = i) TV2A(x0) (xf —xi_y)
t=2 t=2

T T
-
Sr=y X = xiallf = (x5 —x) TV (% — i)
t=2

t=2

where ||h|; = /hT V2 f;(x})h. Compared to the definitions in (3) and @), we introduce V2 f;(x})
when measuring the distance between x; and x;_;. When functions are strongly convex and smooth,
these definitions are equivalent up to constant factors. We then define a quantity to compare the
second order structure of consecutive functions:
X ~-1/2 . . —~1/2

p= max e (V2 (0] V20060 (V2] %)} a0
where \pax(-) computes the maximum eigenvalue of its argument. When all the functions are \-
strongly convex and L-smooth, 1 < L/X. Then, we have the following theorem regarding the
dynamic regret of the proposed OMNU algorithm.

Theorem 8. Suppose Assumption[3lis true, and further assume

1
* _*]2 < > 9.
iy = il < 0 VI =2 (an
When t = 1, we choose K = O(1)(f1(x1) — f1(x3) + loglog p) in OMNU such that
1
—x¥2 < —— . 12
[x2 = %11 < 144y (12)

Fort > 2, we set K = [log,(16u)] in OMNU, then

T
> filx) = fulx) < min (5P, 457) + ) - fi6x0) + g
t=1

The above theorem again implies the dynamic regret can be upper bounded by O(min(Ps, S3))
when the learner can access the gradient and Hessian multiple times. From the first property of
self-concordant functions in Definition @] we know that x} must lie in the interior of X;, and thus
V fi(x}) = 0forall t € [T]. As aresult, we do not need the additional assumption that the gradients
of minimizers are small, which has been used before to simplify Theorems 2] and [Z}

Compared to Theorems 2] and [7L Theorem [8 introduces an additional condition in (IT). This condi-
tion is required to ensure that x, lies in the feasible region of f;(-), otherwise, f;(x;) can be infinity



and it is impossible to bound the dynamic regret. The multiple applications of damped Newton met-
hod can enforce x; to be close to x;_,. Combined with ({11}, we conclude that x; is also close to X;.
Then, based on the property of the Dikin ellipsoid of self-concordant functions [Nemirovski, 2004],
we can guarantee that x; is feasible for f;(-).

4 Conclusion and Future Work

In this paper, we discuss how to reduce the dynamic regret of online learning by allowing the learner
to query the gradient/Hessian of each function multiple times. By applying gradient descent multiple
times in each round, we show that the dynamic regret can be upper bounded by the minimum of the
path-length and the squared path-length, when functions are strongly convex and smooth. We then
extend this theoretical guarantee to functions that are semi-strongly convex and smooth. We finally
demonstrate that for self-concordant functions, applying the damped Newton method multiple times
achieves a similar result.

In the current study, we upper bound the dynamic regret in terms of the path-length or the squared
path-length of the comparator sequence. As we mentioned before, there also exist some regularities
defined in terms of the function sequence, e.g., the functional variation [Besbes et all,[2015]. In the
future, we will investigate whether multiple accesses of gradient/Hessian can improve the dynamic
regret when measured by certain regularities of the function sequence. Another future work is to
extend our results to the more general dynamic regret

T

R(uy,...,ur) = th(xt) — th(ut)

t=1

where uy,...,ur € X is an arbitrary sequence of comparators [Zinkevich, 2003].
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A Proof of Theorem 1

For the sake of completeness, we include the proof of Theorem [0l which was proved by
Mokhtari et al| [2016]. We need the following property of gradient descent.

Lemma 1. Assume that f : X — R is A-strongly convex and L-smooth, and x,. = argmin, . » f(x).
Letv =TIy (u—nVf(u)), wheren < 1/L. We have

2\
1/n+A

Iv—x.] < Ju—x.].

The constant in the above lemma is better than that in Proposition 2 of [IMokhtari et al. [2016].
Since ||V fi(x)|| < G forany t € [T] and any x € X, we have

T T
D fil) = filx)) <G Ixe =X l- (13)
t=1 t=1

We now proceed to bound ZtT:l |lx: — x7||. By the triangle inequality, we have

T T
D o lxe = xl < o = x5+ (e — x5 |+ [l =% 11) - (14)
t=1 t=2

Since
x; = lx (Xt—l - vat—l(xt—l))
using Lemmal[Il we have

llxe — %71l < vlIxe—1 — x7_q |- (15)
From (14) and (13)), we have
T T T
D e = x5l < ko = x5l + 9D lIxe1 = x5y |+ Pr < llxa = x5+ Y Ixe — %7 + P
t=1 t=2 t=1
implying
d 1 1
_ * < * _ * . 16
> b =il < 7 P e = x| (16)

We complete the proof by substituting (16} into (13).
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B Proof of Lemmalll

We first introduce the following property of strongly convex functions [Hazan and Kale, 2011].

Lemma 2. Assume that f : X — R is A-strongly convex, and x,, = argmin, .y f(x). Then, we

have N
160 = fx) 2 Slx = x|, ¥x € &.
From the updating rule, we have
1
v = argmin f(u) + (Vf(w),x - u) + o x — u2
xeX 2’17
According to Lemma 2] we have

1
fw) +(Vf(u),v—u)+ 77Hv —ul?
1 1
<f(u) +(Vf(u),x. —u) + *nllx* —ul® - 77||v —x %
Since f(x) is A-strongly convex, we have

Flw)+ (9 (), %, — ) < 7o) — 5 e —ul]”.

On the other hand, the smoothness assumption implies

a7

(18)

19)

fv) <f(0) +(Vf(u),v —u)+ gllv —u* < f(u) +(Vf(u),v —u) + inllV —ul®. (20)

Combining (18], (I9), and @20), we obtain
A 1 1
Fv) < flx) = Gl —ul” + %HX* —uf? - %HV — x|
Applying Lemma 2l again, we have
A
Fv) = fx) 2 5lv = x|
We complete the proof by substituting (22)) into (2I)) and rearranging.

C Proof of Theorem 2

Since f;(-) is L-smooth, we have

L L
felxe) = fio(xp) <(Vfe(xp) xe = x3) + S 1% — x; 1 < IV fax) e — x| + 3

Combining with the fact
. . 1 . o .
IV fe(x) % — x| < %I\Vft(xt)ll2 + 5 lxe —x; 12
for any a > 0, we obtain

fi(xe) = fe(xf) < ”Vft( DI+

Summing the above inequality over ¢ = 1, ..., T, we get

T 1 & L+a
th(xt — fi(x7) Z*ZHVft H2 Z”Xt—XtHQ
t=1 =

L+« "
= xi P,

We now proceed to bound Zthl lx: — x;||%. We have

T

T
D olxe = x(IP < = x{ 1P+ 2 (e = xiall® + iy — x711%) -

t=1 t=2

12

2n

(22)

e — I

(23)

(24)



Recall the updating rule

]H =1IIr (Zt 1 ant_l(zgfl)) ,i=1,....K.
From Lemmali]l we have
2\ :
41 * *
It =%l < (1= o) el = xEal?
which implies
2\

2 K+1 )2
X; — X) z, —X <{l—-—-
|| t t— 1” || t 1|| — < 1/7,] )\

K 1
) [t =364l < S — i
(25)

where we choose K = [1/;77;)‘ In 4] such that

(1 22 >K<e < 2K)\><1
- Xp| ——/———~ —.
I/n+Xx) — P I/n+X) ~ 4

From (24) and 23), we have

T T
1
D lxe =i 1P <llxs — x| + 3 D Ixemr = x|l + 257

t=2
1 T
<lxy — x|+ 5 > lxe = x| + 287

implying
T

D ke = x7|1? < 487 + 2||x1 — x|
t=1
Substituting the above inequality into (23]), we have

th (xe) = felxg) < o~ Z IV £e ()N + 2(L + a) St + (L + ) ||x1 — x|

f 1

for all o > 0. Finally, we show that the dynamic regret can still be upper bounded by P7. From the
previous analysis, we have

e 1 1
e = X512 S glixes = i 1P = e = xil] < 5l = x|

Then, we can set v = 1/2 in Theorem [Iland obtain

th (x¢) — fe(x}) < 2GPr +2G|x1 — x7].

D Proof of Theorem 3
We will randomly generate a sequence of functions f; : R +— R, ¢ = 1,..., T, where each f;(-)

is independently sampled from a distribution P. For any deterministic algorithm A, it generates a
sequence of solutions x; € X, ¢ = 1,...,T, we define the expected dynamic regret as

th xt) — fi Xt)] :

We will show that there exists a distribution of strongly convex and smooth functions such that for
any fixed algorithm A, we have E[R}.] > E[S7].
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For each round ¢, we randomly sample a vector ¢, € R? from the Gaussian distribution A/(0, I).
Using ¢4, we create a function

fulx) =2|x —7e,|”
which is both strongly convex and smooth. Notice that x; is independent from ¢, and thus we can
bound the expected dynamic regret as follows:

w1 =D Blfi(xe) = fulx)] =2 B [|xel|* +dr®] > 2477°.
t=1 t=1

We furthermore bound &7 as follows

T
=Y E[ller — era?r?] = 2d(T — 1)7?
t=2

Therefore, E[R}.] > E[S5]. Hence, for any given algorithm A, there exists a sequence of functions
oo, frosuchthat S fi(xe) — folx}) = Q(Sh).

E Proof of Theorem

The proof is similar to that of Theorem [Tl

We need the following property of gradient descent when applied to semi-strongly convex and
smooth functions [Necoara et al), 2013], which is analogous to Lemma [1 developed for strongly
convex functions.

Lemma 3. Assume that f(-) is L-smooth and satisfies the semi-strong convexity condition in (8).
Let v =y (u—nVf(u)), where n < 1/L. We have

B
1/n+p8

Since ||V fi(x)|| < Gfor any t € [T ] and any x € X, we have

th(xt Zmlnft th (x¢) = fo (s (x¢)) <GZHXt I ()| (26)
t=1

t=1

v = Iy« (V)] < [[u — Ly, (w)]].

We now proceed to bound thl ||Xt — ILx: (x¢)|. By the triangle inequality, we have

T T
S e~ T ()] < [l — T () + 3
t=1 t=2

Xt — HXt*_l (Xt)

+ HHXt*—l(xt) — H)(t* (Xt)

).

(27
Since
xt =y (x¢—1 =NV fi1(x¢-1))
using Lemma 3] we have
[ = T, x| < 3 e = T (i) (28)
From @27) and 28)), we have
T
D Il = T ()|
t=1
T T
< |lx1 = s (x1)]| + WZ thfl — x- | thl)H + Z HHX;_l(Xt) — My (xt)
t=2 t=2
T
< lxr = oy o) |+ D [l = T ()| + 7
t=1
implying
a 1, 1
Dl = Mo ()| < == P [x = T () (29)

t=1
We complete the proof by substituting (29) into 26)).
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F Proof of Lemma

For the sake of completeness, we provide the proof of Lemma [3l which can also be found in the
work of INecoara et al) [2015].
The analysis is similar to that of Lemmal[ll Define

a =1y (u), and v = Iy« (v).

From the optimality condition of v, we have

F(u) + (VF(u),v — ) + %nv —ul?

1 1 (30)
<f(u)+ (Vf(u),a—u) + %Ilf1 —ul® - %IIV -l
From the convexity of f(x), we have
fu) +(Vf(u),u—u) < f(a). (1)
Combining (30), 31)), and @20), we obtain
1 1
fv) < @) + g llo =l = v - all® (32)
From the semi-strong convexity of f(-), we further have
_ B _
fv) = f@) =5 lv - VI
Substituting the above inequality into (32), we have
1 1 1
pla—ulP > v —al?+ S v - o1 2 (5 + 5 ) Iv -
which completes the proof.
G Proof of Theorem 7]
The proof is similar to that of Theorem[2l In the following, we just provide the key differences.
Following the derivation of (23)), we get
T T T
1 2 L+ao 2
th(xt Zmlnft %ZHVJ% (th* (Xt))“ + 2 ZHXt —HXt*(Xt)H
t=1 t=1 t=1
, (33)
1 ., L+ao 2
S9aCrt Ty 2w~ T b
for any o > 0.
To bound 371, [[x¢ — ILxx (%)% we have
T

Xt — HX* 1(Xt H + HH Xt) HX* Xt H >

(34)

Sl =t e < o =23

t=1

From Lemma[3land the updating rule

ziﬂl =1lx (zt 1 nvft—l(zgq)) ,i=1,..., K

we have

1 1 B
-t @] < (1- 52|

2
. ji=1,....K

Zg— 17 HX;‘,I (Zi—1) ‘

I/n+p
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which implies

e = M G| = [aft =, |
- 11 Pl I Y
<(1- =T (x| < = ket — T (x4
_( 1/77_’_5) ‘Xt 1 thl(Xt 1)H = 4’Xt 1 thl(Xt 1)”
where we choose K = [MTJrﬁln 4] such that
K
K 1
(i) 2o )=
1/n+p 1/n+p
From and (33), we have
T
2
ZHXt—HX;(Xt)H < |lx1 — My (x H + th 1=y (%41 H + 287
t=1
o i (36)
< [lxr = Tz ()| +§Z|!Xt—ﬂxz(><t)!| +257
t=1
implying

T
3 I = g (e[ < 485 + 2 s = T o)

Substituting the above inequality into (33)), we have
. 1 2
_ < —GF * — * > 0.
Zl Fu(xe) t;xmelg fi(%) € 5-GT + 2L+ )8t + (L +a) [[x1 — Tly; (x1)||”, Ya >0

Finally, we show that the dynamic regret can still be upper bounded by P;. From the previous
analysis, we have

o < 5]

th Iy

= ( x¢—1 — Har (thl)H~

t—1

Then, we can set ¥ = 1/2 in Theorem[6l and obtain

T T
> filxe) - Zggg fi(x) < 2GP; + 2G ||x1 — Tz (x1)]] -
= t=1

H Proof of Theorem

The inequality (I2) follows directly from the result in Section 2.2.X.C of INemirovski [2004]. To
prove the rest of this theorem, we will use the following properties of self-concordant functions and
the damped Newton method [Nemirovski, 2004].

Lemma 4. Let f(x) be a self-concordant function, and ||h||x = \/h"V?2f(x)h. Then, all points
within the Dikin ellipsoid Wy centered at x, defined as Wy = {x' : ||x’ — x||x < 1}, share similar
second order structure. More specifically, for a given point x and for any h with ||h||x < 1, we have

V2f(x)
2 o2 2
Define x* = argmin, f(x). Then, we have
" A(x)
e S Y (38)

where A(x) = \/xT [V2f(x)] "
Consider the the damped Newton method: v =u — 1+>\(11 (V2f(u)] - V f(u). Then, we have
A(v) < 20%(u). (39)
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We will also use the following inequality frequently
||X||t = XTVth(Xt)X
1 _1 _1
V()] VP feea(xio)] 7 VAfxE) [V2 foa(xio0)] 7 V2 fema(xi0)] 7 x

(010
< ,uXTV2ft—1(X:—1)X = pllxll7_;.

N

(40)
We will assume that for any ¢ > 2,

y 1
[xe — %[l < 5 (41)
which will be proved at the end of the analysis.

According to the Taylor’s theorem, for any ¢ > 2, we have

* 1 * *

Ffelxe) = folxt) = 5 (xe — x;) V2 fil&) (e — x7)

where & is a point on the line segment between x; and x;. Now, using the property of self-
concordant functions, we have

1

(=& —x¢[e)? (1= =t = x7]10)?

where we use the inequality in (@I to ensure ||x; — x}||; < 1. We thus have

V2 (6) = V(x4 6 —x1) 2 V2, (x) < T2/, (x0)

x; — x¥||?
fuloer) — ) < X = X0l

2
=2 i - el

As a result

T T
D i) = o) < o) = D) + 3 I = xiE “2)

t=2

We first bound the dynamic regret by S7. To this end, we have

o * (12 o * 2 * * 2 o * 2 *
Z [l =%z |7 < 22 (th = xp_alli +IIxE - Xt—l”t) < Q.UZ % =xi_q[l7-1 +257. (43)
t=2 t=2

We proceed to bound 2322 llx: —x;_1]|7_;. Since x; is derived by applying the damped Newton
method multiple times to the initial solution x;_1, we need to first bound A;_1(x;_1). To this end,
we establish the following lemma.

Lemma 5. Let f(x) be a self-concordant function, and x* = argmin,_ f(x). If ||lu — x*|
, we have

x <1/2

Au) < L

=1_ 2Hu _ X*Hx* ||11 - X*”x*'

The above lemma implies

1
Ar—1(x4—1) <

Tl =2k =Xl 4

(44)

@ /3 1
iy =i alleer S min (Sl =%l 7).

Recall the updating rule

, , 1 . -1 ,
zji_lzz]_ _—_— v2 _ ZJ_ :| V _ Z]_ 5 217,K
t—1 t—1 1_’_)\#1(471) Tt 1( t 1) ft 1( t 1) J
From Lemmal] we have

Al 2 2 ), =1 K.
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Since A\;_1(z}_;) = M\—1(x¢_1) < 1/4. By induction, it is easy to verify

; 1
At—l(Zi_l)SZ,j:17~--,K7K+1~ (45)

Therefore,

1 1 1
A () = A1 (2771) < S (7)) < < gpdea (i) = gphea (). (46)

Again, using Lemmald] we have
(k1) Af 1(Xt) .69 4 1 @@ 2 %
[t —x7_1l[e-1 < m < 32K)\t 1(x¢-1) < 27HXt—1 = Xi_qle—1
implying
* 4 *
lx: — thlthfl < 47|‘th1 - thlHi%fl' 47)

Combining (@3)) with (@7), we have

ZIIXt—Xth ZHXt 1= Xp[lfo + 2ulxe — xT(|T + 257
o - (48)
<3 D ke = X117 + 2ullxo = x7[1F + 257
t=2
where we use the fact f—ﬁ < 1/2. From (@8), we have
a * (12 * (12 * m 1 *
Dl = xillf <dullxs = x{llf + 48 < o + 457 (49)
t=2
Substituting (@9) into (@2)), we obtain
N 1
th xt) = fi(x}) S AST + fi(x1) — fl(x1)+%-
Next, we bound the dynamic regret by Ps.. From @I) and #2)), we immediately have
th (xt) = fi(x}) < fi(x1) = Fi(x]) Z e — %7 |- (50)
To bound the last term, we have
T T
S e = x5l <> (ke = x5 lle + x5 = x741l4)
t=2 t=2
a0 T
< \FZ % = x{_qlle-1 + Vaullx2 = x7|1 + Pr
=3
@I [ L
< 4T<Z||Xt 1= Xy [le—1 + o tPr
t=3
1 « 1
< §Z||Xt = Xille+ 45 +Pr
t=2
which implies
Zth—xth +27DT. (51)
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Combining (30) and (31)), we have

thxt A6 < 5Ph+ Rla) — A + o

Finally, we prove that the inequality in () holds. For ¢ = 2, we have

1 @ 1
<
72 — 36
Now, we suppose @I is true for t = 2, ..., k. We show (@I)) holds for t = k + 1. We have

_*2<2 _*22*_*2 {2 _o*||2
l[x2 — x5(|5 <2[|x2 — x7 |2 + 2[|x] — %55 pllx2 — x7||7 +

k41 = Xk g 71 < 2lxngn — xR + 20I%5 — x5 1740

T aulhts — X1+ 7y 2 i~ s < 2l X+ 7y < e
72 4K 72 T 2 72~ 36
I Proof of Lemma
By the mean value theorem for vector-valued functions, we have
Vfi(u)=Vf(u) - Vf(x / V2f (x* +7(u—x*)) (u—x*)dr. (52)

Define 1

g(x) =x" [V*f(u)] " x

which is a convex function of x. Then, we have

N2(u) = (Vf(w), [V2f(w)] " Vf(w)) = g (VF(w)

(/ V2 (x* + 7(u—x*)) (u— x)dr)_/Olg(sz(x*+T(u—x*))(u—x*))d7
(53)

where the last step follows from Jensen’s inequality.

Define {; = x* + 7(u — x*) which lies in the line segment between u and x*. In the following, we
will provide an upper bound for

g (V2f(E)(u—x7) = (u—x")TV2f(E) [VEF(w)] ' V2F(E) (u—x7).

Following Lemmall we have

2 72 * * G 1 2 * 1 2 *
V(&) =Vif(x" +& —x") = (1— & x*)zv f(X)j(l—Hu—X*Hx*)Qv f(x),
(54)
o @ fu-&|3- Ju — x*||%-
la—¢&- e, < ToTo—x ) S 0w ) < 1, (55)

&D — _
Vif(u) = V2f(& +u—§&) = (1 —|lu—&e )’V f(ff) <1 2||u — x

N 2
il | Rl | S IS v £ ).
1—||u—x*||x*> f&)

(56)

As a result

g (V) u—x") 2 (

1—|lu

) (0 =x), V2 f(&) (0 =)

! || *| §
u—X
(1 2”“ X*||X*)2

We complete the proof by substituting (37) into (33).

(57)

IA@

x* .
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