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Abstract

Architectural Design Space Exploration (DSE) is a notori-
ously difficult problem due to the exponentially large size of
the design space and long simulation times. Previously, many
studies proposed to formulate DSE as a regression problem
which predicts architecture responses (e.g., time, power) of a
given architectural configuration. Several of these techniques
achieve high accuracy, though often at the cost of significant
simulation time for training the regression models.

We argue that the information the architect mostly needs
during the DSE process is whether a given configuration will
perform better than another one in the presences of design con-
straints, or better than any other one seen so far, rather than
precisely estimating the performance of that configuration.

Based on this observation, we propose a novel ranking-
based approach to DSE where we train a model to predict
which of two architecture configurations will perform best.
We show that, not only this ranking model more accurately
predicts the relative merit of two architecture configurations
than an ANN-based state-of-the-art regression model, but also
that it requires much fewer training simulations to achieve the
same accuracy, or that it can be used for and is even better at
quantifying the performance gap between two configurations.

We implement the framework for training and using this
model, called ArchRanker, and we evaluate it on several DSE
scenarios (unicore/multicore design spaces, and both time and
power performance metrics). We try to emulate as closely as
possible the DSE process by creating constraint-based sce-
narios, or an iterative DSE process. We find that ArchRanker
makes 29.68% to 54.43% fewer incorrect predictions on pair-
wise relative merit of configurations (tested with 79,800 con-
figuration pairs) than an ANN-based regression model across
all DSE scenarios considered (values averaged over all bench-
marks for each scenario). We also find that, to achieve the
same accuracy as ArchRanker, the ANN often requires three
times more training simulations.

1. Introduction

Design Space Exploration (DSE) is a largely iterative trial-
and-error process guided by the intuition of the architect. At
every step, the architect needs to choose among a vast set of
architectural techniques and parameters values; and this is
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typically done using a set of simulations, which are known to
be very slow, even when combined with sampling techniques.

In order to speed up that process, many previous studies
have proposed to formulate DSE as a regression problem,
and trained regression models (e.g., Artificial Neural Net-
work (ANN), Support Vector Machine (SVM), linear or spline
functions, etc) with simulated configurations sampled from
the design space [1, 6, 7, 18, 24, 25, 26, 28, 27, 34]. The
trained regression model can quickly predict the performance
of unseen architecture configurations without additional simu-
lations. By comparing the predicted performance of several
architecture configurations, the architect can select the most
promising next step of the DSE process.

Interestingly, all regression models have focused on predict-
ing the performance of any given architecture configuration
rather than predicting which of any two architecture configu-
rations performs best, even though it is the latter information
that mostly guides the DSE process in the end. However, the
former, i.e., accurately predicting the performance of any con-
figuration is a hard problem which requires a large amount
of training simulations to achieve decent accuracy, and even
that accuracy may not be sufficient to correctly predict the
relative merit of two configurations. For instance, consider
two configurations x; and x, which respectively have an IPC
of 1.10 and 1.20, and a regression model that predicts x; and
X, to respectively have IPC of 1.15 and 1.14, the model error
is only 4.77%, but the model incorrectly predicts x; to be a
better configuration than xj.

Based on this observation, we formulate DSE as a rank-
ing problem. We introduce a novel DSE technique, called
ArchRanker, which trains a model to predict the relative rank-
ing of a pair of configurations. We show that not only this
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approach predicts more accurately the relative merit of two
configurations than regression models which predict config-
urations performance, but it also requires significantly fewer
simulations to be trained. Moreover, we show that this method
can not only accurately predict which configuration is the
best, but also estimate the relative performance between two
configurations, another important element of the DSE process.

We compare ArchRanker against a state-of-the-art design
space regression technique (ANN [18]) on both unicore and
multicore design scenarios. On various constrained scenarios,
e.g., with given power or time constraints, we find that the
best configuration response predicted by ArchRanker is 1.65%
to 31.77% better than the one predicted by ANN. On uncon-
strained scenarios, we find that ArchRanker makes 29.68%
to 54.43% fewer incorrect predictions on the relative merit
of two configurations than an ANN-based regression model.
To achieve the same accuracy as ArchRanker, the ANN often
requires three times more training simulations. Furthermore,
we try to emulate an iterative design process (see Section 4.4)
common in DSE practices, and we find again that ArchRanker
makes 25.91% to 90.82% fewer incorrect decision than the
ANN.

In summary, our main contributions are the following. First,
we propose to formulate DSE as a ranking problem, and in-
troduce a ranking-based DSE technique called ArchRanker.
Second, we show that ArchRanker is generally more accurate
than a state-of-the-art regression-based DSE technique at pre-
dicting the relative merit of two architecture configurations,
and requires fewer simulations to achieve the same level of
accuracy as the regression-based technique. Third, we emulate
various DSE scenarios and we show that ArchRanker almost
systematically outperforms the regression-based technique.

Section 2 describes the ranking formulation of DSE and the
ArchRanker framework, Section 3 introduces the methodology,
Section 4 presents our experimental results, Section 5 reviews
the related work.

2. Ranking Architectural Configurations

Learning-to-rank is a machine learning paradigm which con-
structs a ranking model from training data, and the goal is
to predict the ranking of new items. So far, learning-to-rank
(ranking for short) techniques have been widely applied to real-
world information retrieval applications, such as web search,
recommender system and so on [29]. Ranking techniques are
typically effective for problems requiring a partial or total or-
der of items, according to an item quality metric. Architectural
design space exploration is typically such a problem. In this
study, we formulate DSE as a ranking problem, and design a
novel ranking-based DSE framework called ArchRanker.
Figure 1 presents the ArchRanker framework. ArchRanker
is composed of a training phase and a ranking phase. In the
training phase, ArchRanker simulates n architecture configu-
rations sampled from the design space. It employs a learning-
to-rank technique called RankBoost [12], which significantly

Figure 1: Framework of ArchRanker.

differs from regression techniques in the way it uses simulated
configurations. Given n simulated configurations (and their
metric value, e.g., execution time or power), ArchRanker con-
verts them into C2 = n(n — 1)/2 pairs. Based on the metric
value of the two configurations in a pair, a pairwise preference
is created (i.e., which of the two configuration is preferred),
and the model is trained using these preferences. Because n
configurations become C2 such preferences, the ranking model
actually has a significantly larger training set than a traditional
regression model (n(n — 1)/2 vs. n) with the same number of
simulations. In the ranking phase, ArchRanker assigns each
configuration a ranking score. This score can be obtained
for training configurations but more importantly, for any yet
unseen configuration.

2.1. Ranking Formulation

We now present a formal description of ranking. Let <7 denote
an architectural design space, x € 7 denote an architectural
configuration, and R(x) denote the metric value (also called the
response) of configuration x. In DSE, architects are given a set
of simulated configurations § = {x,...,x,} which have been
ordered by their responses, i.e., R(X1) < R(X2) < -+- < R(Xy)
(note that if two configurations have the exact same metric
value, the pair yields no preference). The set of simulated
configurations induce up to n(n — 1) /2 pairwise response pref-
erences of configurations, which are collected in the training
set U = {(x,X');R(x) < R(x')} for the ranking-based DSE.

Definition 1 (Ranking-based DSE) Taking the set of pair-
wise preferences of configurations (U defined above) as input,
ranking-based DSE constructs a ranking model (function)
H : of — R, which assigns a ranking score H(x) for each con-
figuration x in the design space <. In ranking, configurations
are sorted according to the ranking score such that x' = x (x'



is ranked higher than x) if H(x') < H(x).! The architectural
configuration ranked at the first place is the winner of that
DSE step.

2.2. Learning Algorithm

ArchRanker employs a representative learning-to-rank algo-
rithm called RankBoost [12] to construct the ranking model.
RankBoost is a kind of ensemble method which uses multiple
base learners to create a strong learner having excellent gener-
alization ability [45], and particularly belongs to the family of
Boosting algorithms [36]. In a nutshell, RankBoost iteratively
trains several base rankers Ap,...,hr, and provides a linear
combination of these base rankers as the final ranking mod-
el H. Algorithm 1 presents the standard flow of RankBoost,
whose input is a training set consisting of pairwise preferences
of simulated configurations. In order to minimize the ranking
error with respect to the training set, the ¢-th base ranker (4
in Algorithm 1) trained at the 7-th iteration of RankBoost will
concentrate more on those pairwise preferences that are not
correctly ranked by the former base ranker 4;_;. Such online
adaptation is achieved by dynamically adjusting a discrete
probability distribution called the weight distribution (D, for
the 7-th iteration) throughout iterations.

We now elaborate how the weight distribution D; is ini-
tialized and updated. Let S be the set consisting of sample
configurations, R(x) be the processor response of a simulated
sample configuration x, and (x,x’) be the pair of simulated
configurations x and x’. The initial distribution Dy assigns a
uniform probability for every configuration pair (x,x’) having
the response preference R(x) < R(x'):

Di(x,X) = { é{g’

where g = |{(x,x') € § x S;R(x) < R(x')}| is a normalization
factor guaranteeing that D is a correct probability distribution
(i.e., YxesxesD1(x,X') = 1). With the setting presented in Eq.
1, RankBoost does not need to repeatedly consider the pair
(x/,x) if the symmetric pair (x,x’) has already been taken into
account. At the end of the ¢-th iteration, RankBoost updates
the distribution D, with respect to each configuration pair
(x,x'):

if R(x) < R(X);

it R(x) > R(X), M

D) = 5 D(x.xexp (@ (1(x) - m(x)) @)

where Z; is also a normalization factor guaranteeing that D, |
is a correct probability distribution, and the weight ¢, defined
in Algorithm 1, is the coefficient of base ranker /,. The above
rule can intuitively be explained as follows. If the 7-th base

'When we consider the execution time or power of architectural config-
uration, we would prefer a smaller ranking score, which is the definition
presented here. When we consider the IPC of architectural configuration, we
would prefer a larger ranking score, thereby we inversely define x > x’ (x is
ranked higher than x') if H(x") < H(x).

ranker correctly predicts the pairwise order between simulated
configurations x and x’ (i.e., i (X) < h(x)), then the weight
assigned to the pair (x,x’), represented by D, (x,x’), will
decrease. Otherwise, if the #-th base ranker incorrectly predicts
the pairwise order between simulated configurations x and x’
(i.e., h(x) > h(x")), then the weight will increase. Owing to
this updating rule, the training of the next base ranker /4,1 will
put less emphasis on correctly ordered pairs, and concentrate
more on incorrectly ordered pairs.

At the ¢-th iteration, RankBoost trains the base ranker /;
based on the weight distribution D; such that A, can concen-
trate more on pairwise preferences that cannot be correctly
ranked by the former base ranker /;_1. Following the standard
setting of RankBoost, each base ranker is a simple learning
model called the decision stump [12, 17], which is mathemati-
cally defined as the following step function:

h(x):{ (1) if fi(x) > 6; 3)

otherwise,

where f;(x) represents the i-th design parameter of the config-
uration x, and O is a constant threshold. To train a base ranker,
we iteratively search for the best combination of feature in-
dex i and threshold 0 following Freund et al. [12]. After T
iterations of RankBoost which train T base rankers (decision
stumps) hy,. .., hr respectively, the final ranking model H

T
H(X) - Z Otth; (X) (4)
=1

is ready to assign any input configuration x a ranking score
such that different design configurations can be ranked accord-
ing to their ranking scores. The combination of multiple base
rankers (decision stumps) is capable of representing non-linear
mappings [36, 45].

Note that, because ArchRanker uses relative information
for training, i.e., preferences between configurations, it is
possible to leverage external “hints”. Such hints can carry
expert knowledge, e.g., “the ratio of cache size to cache block
size should not drop below value X, which can increase the
training set size at no simulation cost (e.g., the configuration
complying the hint may be better than the one violating it),
and thus improve the ranking accuracy. We leave the addition
of such expert knowledge for future work.

2.3. Constrained DSE

So far, we have described how ArchRanker can predict which
of two configurations is the best. This is sufficient to find the
best possible configuration within a given design space. How-
ever, DSE is often constrained. For instance, one sets a given
power constraint, and attempts to find the configuration which
achieves the best possible execution time (or lowest possible
area, or a pareto combination of both) and still satisfies the
power constraint.



Algorithm 1: Training a Ranking Model with RankBoost

Input S: set of sample configurations;

Input 7: number of training iterations;

D; (t =1,2,...): distribution (over S x S) for ¢-th iteration (Initial
distribution D is specified by Eq. 1);

o (t =1,2,...): control parameter for the ¢-th iteration;

begin

fort=1,...,T do

Train a base ranker /; (x) with distribution Dy;

o= %ln(ifw;
// r; is an auxiliary parameter having value
Yux Di(x,X') exp ((h, (x')—hy (x))) .
V(x,x') € Sx S:
Dy (5:X) = Dy (X)) exp (4 (1 () — () ) /2
//Z; refers to the normalization factor

Eaw Di(x,X) exp (0 (i ()~ i (x')) ).

end
Output the final ranking model: H(x) = Y| oy (x);

end

Figure 2: Constrained DSE.

Figure 3: Binary search.

For that purpose, ArchRanker uses a two-step process, see
Figure 2. Let us consider again the above example of mini-
mizing the execution time within a given power budget, e.g.,
10W. We assume that ArchRanker has # (e.g., n = 100) train-

ing configurations, and we wish to explore about N (e.g.,
N = 100,000) configurations. We first build a power model
(response = power) using ArchRanker, and use it to rank the
N configurations. We now need to find which among these N
configurations satisfy the 10W constraint. For that purpose,
we use a simple binary search coupled with a few additional
simulations (we call n¢onsraine the number of additional sim-
ulations): we pick the median point of the ranked list (the
one which divides the list into two parts of the same size),
simulate it to get its power, and thus decide which part of
the list we keep, i.e., which part contains the configurations
which will satisfy the constraint. And we recursively iterate
the process until the list contains only two configurations, one
with a power slightly less than or equal to 10W, and one with
a power slightly greater than 10W (or an empty set if no con-
figuration satisfies the power constraint), see Figure 3; the
former is the threshold configuration. At most, ArchRanker
needs neonsraine = |10g2(N) ] + 1 configurations, e.g., 17 for
N = 100,000 configurations, or 20 for N = 1,000,000 config-
urations.

Then, ArchRanker discards all configurations (among the
N-configuration design space) with a worse ranking than the
threshold configuration, and keeps the remaining N;jesnota
configurations. Using the n training configurations, it builds
a second ranking model, but for the execution time response
now. It then feeds all Nypenoiq configurations to this new
model, and selects the top configuration as the best one (best
execution time within the power constraint).

2.4. Response Gap

While it is essential to know which among two configura-
tions is the better one for the DSE process, it is not always a
sufficient information. The architect may also want to know
how much the better configuration improves performance over
the configuration previously selected in the DSE process. A
rough estimate is sufficient to decide whether the increment is
significant enough to shift to the new configuration.

In this section, we show how ArchRanker can be used for
that purpose as well. The principle is to use the simulated
points in the training set as references to estimate the response
gap between two configurations. ArchRanker also uses this
approach to decide whether the training set is sufficient to
estimate the response gap, or if it is necessary to trigger new
simulations.

Consider two yet unseen configurations x and x’ between
which we want to estimate the response gap R(x) — R(x').
Without loss of generality, we assume that H (x') < H(x) (re-
call H(-) is the ranking function given by ArchRanker). Note
that when ArchRanker correctly predicts the pairwise prefer-
ences between x’ and x, R(x’) < R(x) also holds (recall R(-)
is the response).

We first rank all simulated configurations {y;,1 <i <n}.
Then, we select configuration y, such that H(y,) < H(x) and
it minimizes the difference H(x) — H(y, ). Similarly, we select



Table 1: Unicore Design Space.

Parameters Values Number
Fetch/Commit Width 24,8 3
FP Unit 2,4,6,8 4
ALU 2,4,6,8 4
L1 ICache 1,2,4,8,16,32KB 6
L1 DCache 1,2,4,8,16,32KB 6
L2 UCache 256-4096KB: 2* 5
ROB Size 16-256: 16+ 16
LSQ Size 8-128: 8+ 16
GShare Size 1,2,4,8,16,32K 6
BTB Size 512-4096: 2* 4

Total Number 53,084,160

¥y such that H(x') < H(y, ) and it minimizes the difference
Hiyy) — H(X).

As aresult, H(y,) — H(yy) < H(x) — H(x'), which yields
H(y,) +H(x') < H(yy)+ H(x). When ArchRanker correctly
ranks pairs (y,yy ) and (x,x’), the above inequality implies
that R(y,) + R(x") < R(yy) + R(x). In other words, R(y;) —
R(y;s) is a lower bound of R(x) — R(x'), i.e., the response gap
between x and x'.

3. Methodology

In this section, we introduce the platform and experimental
methodology of our study.

3.1. Simulator

Simulations are conducted on a cycle-accurate in-house simu-
lator of a MIPS-compatible commercial processor which has
been validated against both RTL design and manufactured
chips at 65nm; the baseline characteristics of the architecture
are shown in bold in Table 1.

The unicore simulator supports out-of-order execution, reg-
ister renaming, dynamic scheduling, and branch prediction.
The load/store queue of the core supports dynamic memory
disambiguation, out-of-order memory accesses, non-blocking
cache, and load speculation. The multicore simulator is built
upon the aforementioned processor simulator. It adopts a static
Non-Uniform Cache Architecture, and its cache coherence is
maintained with a directory-based MSI protocol. The mem-
ory consistency model is a variation of the weak consistency
model. The cores are connected using a 2D mesh Network-
on-Chip (NoC), where each hop takes 2 router pipeline stages
and 1 link traversal stage.

We measure both unicore and multicore performance using
execution time (in milliseconds). We also measure power
using Wattch [2] for processor components, and CACTI [39]
for caches.

3.2. Design Space

We evaluate ArchRanker over both unicore and multicore de-
sign spaces. The unicore design space contains 10 superscalar
processor parameters, see Table 1, for a total of 53,084,160
configurations. The multicore design space contains 9 pa-

Table 2: Multicore Design Space.

Parameters Values Number
Issue Width 1-4: 2% 3
Core No. 1-8: 2% 4
SMT Context 1-4: 2% 3
Memory Bandwidth ~ 8-64GB/s: 8+ 8
Frequency 1-4GHz: 0.5+ 7
L2 Size 1-16MB: 2* 5
L2 Block Size 32-128B: 2* 3
L2 Ways 1-16Way: 2* 5
L2 MSHRs 32-256: 2* 4

Total Number 604,800

Table 3: Single-threaded programs from SPEC CPU2006.

Program Type Remarks
bwaves CFP2006 Fluid Dynamics
bzip2 CINT2006 Compression
gcc CINT2006 C Compiler
gobmk CINT2006 Artificial Intelligence: Go
gromacs CFP2006 Biochemistry / Molecular Dynamics
hmmer CINT2006 Search Gene Sequence
Ibm CFP2006 Fluid Dynamics
leslie3d CFP2006 Fluid Dynamics
libquantum | CINT2006 Physics / Quantum Computing
milc CFP2006 Physics / Quantum Chromodynamics
sjeng CINT2006 Artificial Intelligence: chess
zeusmp CFP2006 Physics / CFD

rameters, see Table 2, for a total of 604,800 configurations.
We uniformly sampled 500 configurations out of each design
space, for a total of 1000 architecture configurations.

3.3. Benchmarks

For the unicore design space, we use 12 benchmarks from the
SPEC CPU2006 suite, see Table 3. The benchmarks are com-
piled using GCC 4.3.0 and the -O3 optimization level, and they
are executed using reference input sets. We used SimPoint
[35, 31] to reduce the simulation time of these benchmark-
s. For the multicore design space, we use 6 multi-threaded
benchmarks from the SPLASH-2 suite [42]. They are explicit-
ly parallel, shared-memory programs written using the Pthread
library; their inputs are described in Table 4. No particular
criterion led to the selection of the above benchmarks, except
for the time required to perform all training simulations, and
simulation issues for some of the benchmarks.

We simulate each benchmark on the 500 architecture con-
figurations of the corresponding design space, for a total of
9,000 simulations (500 x 12 + 500 x 6).

Table 4: Multi-threaded programs from SPLASH-2.

Program Input Size
barnes 16384 particles
fft 65536 data points
Iu 512 x 512 matrix, 16 x 16 blocks
ocean 256 x 256 grid
radix 1048576 integers
water-nsquared 512 molecules




3.4. Experiments

We compare ArchRanker against an Artificial Neural Network
(ANN), a state-of-the-art regression-based DSE technique [19].
Unless otherwise specified, the ANN model uses the same
numbers of simulated configurations for training and testing as
ArchRanker does. We have used the ANN parameters of Ipek
et al. [19] (16-unit hidden layer). For a thorough comparison,
we have also retrained two other ANN configurations: we have
increased the number of neurons in the hidden layer until it
provides no additional benefit and obtained a 20-neuron hidden
layer, and we did the same for a 2-layer ANN and obtained
16-neuron + 4-neuron hidden layers. In each graph, we only
present one bar for the ANN results, but we are careful to
select the configuration which performs best among the three
aforementioned ones.

For each experiment, unless otherwise specified, we ran-
domly split the 500 simulated configurations available for each
benchmark into two parts, 100 configurations for training the
ranking model (which will be converted into C %00 =4,950 pair-
wise preferences), and the remaining 400 configurations for
testing. For each experiment, we repeat the training 10 times to
reduce the statistical bias, changing the training/testing groups
every time. The ArchRanker training process is iterative, and
we use T = 200 iterations, see Algorithm 1. At most, the
trained ranking model is evaluated over Cz%oo =179, 800 testing
pairs corresponding to the 400 simulated configurations.

4. Experimental Evaluation

We evaluate ArchRanker under different DSE scenarios, and
according to different metrics. Whenever possible, we com-
pare ArchRanker against an ANN-based regression model.

4.1. Constrained DSE

In this section, we emulate the typical constrained DSE case
presented in Section 2.3. We consider three scenarios for both
unicore (U) and multicore (M): optimizing execution time
under a power constraint (Time/Power), optimizing execu-
tion time under both execution time and power constraints
(Time/Time+Power), and optimizing EDDP under both execu-
tion time and power constraints (EDDP/Time+Power), i.e., six
scenarios in total; for instance, the (Time/Time+Power) sce-
nario for multi-cores is denoted M-Time/Time+Power. Note
that EDDP corresponds to energy x time?; this metric has
been used in several recent studies on regression techniques
[8, 26, 27].

For each benchmark in each scenario, we train ArchRanker
using n = 100 simulated configurations, and due to the
Reonstraint @dditional simulations required by the binary search,
see Section 2.3, we train the ANN using 7 + n¢onstraine cONfig-
urations for the sake of fairness.

In order to set challenging constraints for each scenario,
we use the training set to decide the constraint metric values
as follows: for each metric m (e.g., power, execution time),

we find m,,;;, and my,,, within the training set, and we set the
constraint at the lowest k%, i.e., ﬁ X (Mmax — Mmin) + Mupin
(i.e., k = 100 is m,4y, the easiest constraint, and k = 0 is m1,,;,,
the hardest constraint), with the implicit assumption that the
randomly generated training configurations are somewhat rep-
resentative of the global design space. For scenarios having
a single constraint (e.g., U-Time/Power and M-Time/Power),
we use k = 20. For scenarios with two constraints (e.g., M-
Time/Time+Power), we use k = 40 for both constraints be-
cause setting a too stringent constraint would too severely
reduce the number of eligible configurations.
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1.05
® OANN  ®ArchRanker
€
= 1.00 [
[
k<]
3095
2
w
g 090
N
©
£ 085 |
(=]
-4
080 “
FF TS FETFS IS
N S Q@ AN & ‘00\‘\? 48 OQP

U-Time/Time+Power

OANN

W ArchRanker

Normalized Execution Time
o
©
[52]

0.90
0.85
0.80
&(a ,_DQQ, Qo" 0&« @Qa @é \Q@ ) ébb \\\'@ (&o _Q}\Q %@Q 0,2,0
R ¢ & N S N ¥
S S T NN 2 OQP

U-EDDP/Time+Power

OANN B ArchRanker

Normalized EDDP

Figure 4: Performance comparison of ArchRanker and ANN;
for both time and EDDP, the values are normalized to the ANN
results, used as the baseline; recall that the ANN results are
the best obtained across the three ANN configurations.

For any scenario U — m /my or M — m| /m,, we compare
ArchRanker against ANN using the primary metric, i.e., my,
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Figure 5: Performance comparisons of configurations found
by ArchRanker and ANN under constrained multicore scenar-
ios. On each benchmark, the result of ArchRanker is normal-
ized to ANN.

not the constraint metric m,. For instance, for a scenario
where we seek the best possible time under power constraints
on unicores, i.e., U-Time/Power, we compare the Time of the
best solutions selected by ArchRanker and ANN. The results
are shown in Figure 4 for unicore scenarios, and Figure 5 for
multicore scenarios.

ArchRanker outperforms ANN (recall we use the best of the
three ANNSs, see Section 3) on most benchmarks for unicore
time scenarios, i.e., U-Time/Power and U-Time/Time+Power.
However, the best solution found by ArchRanker is only
1.65% and 1.68% better than the one found by ANN on aver-
age. We observed that, on unicore experiments, execution time
values aggregate into a few clusters only within the design
space, though not the power values. For instance, increasing
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Figure 6: Execution time and power of 500 simulated unicore
configurations on sjeng, ranked in descending order.

cache size may bring no benefit until a threshold correspond-
ing to the reuse distance of an array is reached; on the other
hand, increasing cache size always results in a proportional
increase of power. In order to illustrate this clustering phe-
nomenon, we plot the 500 configurations for benchmarks sjeng
(unicore) for both time and power, in Figure 6. Due to this
clustering property, as long as ArchRanker or ANN locates a
configuration which resides in the cluster corresponding to the
best execution time, its result will not be too far away from the
optimum, and only small variations can be expected within the
cluster. On the other hand, the configurations are significantly
more spread out for unicore EDDP scenarios, and ArchRanker
significantly outperforms ANN on many benchmarks of the
U-EDDP/Time+Power scenario, by 9.92% on average.

ArchRanker outperforms ANN on all benchmark-
s of all M-Time/Power, M-Time/Time+Power and M-
EDDP/Time+Power scenarios by respectively 16.98%,
11.44%, and 31.77%. For water-M-Time/Power, the exe-
cution time of the best configuration found by ArchRanker
is 30.79% lower than the one found by ANN. On [u-M-
EDDP/Time+Power, the EDDP of the best configuration found
by ArchRanker is about 58.02% lower than the one found by
ANN.

4.2. Unconstrained DSE

In this section, we consider unconstrained DSE: we evaluate
how ArchRanker performs on any possible pair of the 400
test configurations, i.e., 79,800 pairs in total for both uni-
cores/multicores and time/power scenarios. We compare the
performance of ArchRanker against ANN in terms of the frac-
tion of incorrect pairwise predictions, i.e., which configuration
of a pair is the best, see Section 2.1. As explained in Section 3,
for each architecture (unicore or multicore), we split the 500
simulated configurations into 100 training configurations, and
400 test configurations. We repeat the process 10 times, and
the results presented in Figure 7 are averaged over these 10
experiments.

ArchRanker outperforms ANN for all benchmarks of the
unicore time scenario, and has respectively 38.13% fewer in-
correct predictions (fraction of incorrect predictions: 0.0931
vs. 0.1505) on average. The same goes for the multicore
time and power scenarios where ArchRanker has respective-
ly 54.43% (fraction: 0.0362 vs. 0.0796) and 46.22% (frac-
tion: 0.0411 vs. 0.0764) fewer incorrect predictions on av-
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Figure 7: Incorrect pairwise predictions made by ArchRanker
and ANN.

erage. Only for 3 benchmarks of the unicore power scenari-
0, ANN provides more correct predictions than ArchRanker,
though ArchRanker still outperforms ANN by 29.68% (frac-
tion: 0.0726 vs. 0.1033) on average. For instance, for bench-
mark barnes of the multicore time scenario, ArchRanker has
64.13% fewer incorrect predictions than ANN.

Response Gap. During the aforementioned experiments,
we also record how well ArchRanker predicts the response
gap between two configurations, i.e., not only whether a con-
figuration is better than another, but also by how much, see
Section 2.4. We also compare against the response gap pre-
dicted by ANN. For each pair of testing configurations, we
measure the relative error made by ArchRanker or ANN, i.e.,

‘Pr“ﬁ”e‘;—gf %;ﬁeal—G“p | and we report the median relative er-
ror in Figure 8. Note that we use median instead of average
relative error because Real_Gap can be close to 0 (two con-
figurations with same response), and thus the average relative
error would become artificially big; the median error is the
value separating the lower from the higher half of the set of
all values. We observe in Figure 8 that both techniques can
only provide a rough estimate of the response gap, though
it is often sufficient to decide whether a configuration is po-
tentially worth simulating or not. Even though ANN models
are designed to estimate the time/power responses of a given
configuration, we can observe that the median relative error
of ANN is worse than ArchRanker for most benchmarks (we
do not report mean values as a “mean of median errors” is an
awkward statistical metric). ArchRanker outperforms ANN
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Figure 8: Median relative error of the predicted response gap
by ArchRanker and ANN.

on 7 out 12 benchmarks for the unicore time scenario, on 8
out 12 benchmarks for the unicore power scenario, on 5 out of
6 benchmarks for the multicore time scenario, and on 5 out of
6 benchmarks for the multicore power scenario.

4.3. Number of Training Simulations

We now want to evaluate how many training simulations
ArchRanker and ANN respectively need to achieve the same
level of ranking accuracy (pairwise prediction accuracy). In
order to maximize the number of training simulations we can
consider, we use the unconstrained DSE scenario of Section
4.2. We proceed as follows. For each benchmark, we train
ArchRanker with 100 randomly selected simulated configura-
tions. Then we train ANN with the same 100 configurations
on the same benchmark. If the pairwise prediction accuracy
of ANN is lower than that of ArchRanker, we randomly select
10 more configurations among of the 500 simulated configu-
rations available, see Section 3, and we train again the ANN
model (recall that we actually train three ANN models and
use the best one, see Section 3). We compare the new ANN
model against ArchRanker (still trained on 100 configurations
only) on the remaining 500 — (100+ 10) = 390 configurations,
and we repeat the process (using increments of 10 configu-
rations) until the ANN model achieves the same accuracy as
ArchRanker, or until there are fewer than 100 configurations
left for testing. We call N4, the total number of training
configurations used at any step, so 500 — N4, configurations
are used for testing (naturally, both ArchRanker and ANN
are tested using the same configurations for the sake of fair-



Table 5: Numbers of simulated configurations (training exam-
ples) required by ANN to achieve the same level of prediction
accuracy as ArchRanker. ArchRanker uses 100 simulated con-
figurations for training.

Unicore Design Scenarios

Program Unicore-Time Unicore-Power

bwaves 230 250
bzip2 260 110
gcc 400+ 110

gobmk 230 400+

gromacs 390 400+
hmmer 290 390
Ibm 400+ 270
leslie3d 400+ 100
libquantum 400+ 370
milc 400+ 290
sjeng 400+ 100
zeusmp 380 260
AVG 348+ 254+

Multicore Design Scenarios

Program Multicore-Time | Multicore-Power
barnes 400+ 400+
fft 250 400+
Iu 300 400+
ocean 400+ 400+
radix 400+ 400+
water-nsquared 400+ 400+
AVG 358+ 400+

ness). Using 10 repeated trials, we statistically compare ANN
against ArchRanker; both ArchRanker and ANN are retrained
on every trial, with a new set of 100 original configurations
(but N4, in total for ANN). We use the Wilcoxon rank sum
test [41] to check whether the ANN model has a comparable
ranking accuracy with ArchRanker; the test assigns a signif-
icance to the comparison. If ArchRanker still significantly
outperforms ANN at the significance level of 0.05, we keep
increasing N4, by 10. Otherwise, we stop the process and
record N4y Note that this process is rather optimistic for
ANN because the process is stopped as soon as the advantage
of ArchRanker over ANN is no longer overwhelming, i.e.,
significance less than 0.05.

We report the results in Table 5. On average, the ANN re-
gression model requires 248 %, 154 %, 258+ %, and 300, %
more simulated configurations than ArchRanker on respective-
ly unicore time, unicore power, multicore time, and multicore
power scenarios, in order to achieve a comparable level of
prediction accuracy; note that the “+” means that for some
benchmarks, ANN could not achieve the level of accuracy of
ArchRanker after exhausting all available training configura-
tions. Overall, ArchRanker can save a considerable amount
of training simulations. Beyond the training time benefit, this
result corroborates the intuition at the root of ArchRanker
that the ranking problem is significantly less difficult than the
performance value prediction problem, while still being more
aligned with the preoccupation of the architect during the DSE
process.

4.4. Iterative DSE Process
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Figure 9: Fraction of incorrect DSE decisions made by
ArchRanker and ANN.

In this section, we try to emulate even more closely the
DSE process, which is inherently iterative, and broken down
into a long sequence of trial and error iterations. After N
such iterations, the architect will typically seek an (N + 1)-th
configuration which is hopefully better than the best obtained
after the N previous iterations.

We emulate this scenario using N + 1 configurations as fol-
lows: we pick a subset of N configurations (as if they were the
N previous steps of the DSE process), and we try to predict
whether the (N + 1)-th configuration (the new candidate step)
is better or not than the best configuration among the N other
configurations. We emulate the scenario for N = 100; we
randomly select the 100 configurations among our pool of 500
configurations, and we train ArchRanker using these 100 con-
figurations. We consider in turn each of the remaining 400 con-
figurations as the 101-th configuration, and ArchRanker tries
to predict whether it is better or not than the best configuration
among the 100 configurations simulated so far. We repeat this
process 10 times, by randomly changing the set of 100 config-
urations and retraining every time (in total, 10 x 400 = 4000
predictions per benchmark).

If ArchRanker predicts that this 101-th configuration is bet-
ter, the architect will simulate it, i.e., the prediction will be
used to drive the DSE decision. We measure how many times
this decision is correct, i.e., how many times ArchRanker cor-



rectly predicts the relative merit of this 101-th configuration
with respect to the best seen so far among the 100 previous
configurations. We do the same with the ANN, and we re-
port the results in Figure 9 as the fraction of correct decisions.
For 10 out of 12 benchmarks of the unicore time scenario, 11
out of 12 benchmarks of the unicore power scenario, and all
the benchmarks of the multicore time and power scenarios,
ArchRanker takes better decisions than ANN. On average,
ArchRanker makes 27.90%, 25.91%, 90.82%, and 73.80%
fewer incorrect decisions than ANN on benchmarks of the
unicore time, unicore power, multicore time, multicore pow-
er scenarios, respectively. For instance, on ocean-M-Time,
ArchRanker makes 90.13% fewer incorrect decisions than
ANN.

4.5. Reliability Estimate of Pairwise Prediction
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Figure 10: Reliability of pairwise prediction made by
ArchRanker.

A useful complementary information of a pairwise predic-
tion is the reliability of that prediction. Such a reliability can
be evaluated with a sufficiently large number of samples. By
repeatedly randomly selecting the 100 configurations among
500 used for training, we have a large sample population avail-
able to compute such estimates. So we create k ranking mod-
els Hy,...,H with different training sets (which is a common
practice in machine learning), and, assuming x has a better
response than x” without loss of generality, i.e., R(x) > R(x'),
we estimate the reliability as } ¥ | x (H;(x) — H;(x)), where
x(a) equals 1 for any a > 0, and 0 otherwise.

We apply this approach to the unconstrained uni-
core/multicore time/power scenarios for kK = 20, and we show
the results in Figure 10 in the form of an error bar. We find
that the reliability is 92.87%, 94.48%, 97.01% and 96.49%
on average for unicore time, unicore power, multicore time
and multicore power scenarios, respectively, and varies from
90.36% for gcc-U-Power to 98.71% for radix-M-Time.

5. Related Work

5.1. Regression-based Modeling of Design Space

Over the past few years, a number of excellent regression-
based techniques have been applied to DSE and performance
analysis. Joseph et al. employed linear regression to construct
linear predictive models of the performance of architecture
configurations [21]. These linear models, however, are not
capable of characterizing non-linear response behavior of so-
phisticated design spaces. As a result, Joseph ef al. later
employed Radial Basis Function (RBF) networks (a type of
neural network) to construct non-linear regression models of
processor performance [22]. In parallel with the above work,
Ipek et al. proposed to use ANNs [18, 19], and Lee and Brook-
s proposed to use spline functions [25], to model processor
responses under superscalar or CMP design scenarios. Com-
pared with ANN, the results of spline function are easier to
interpret but requires human interventions; both methods were
found to have similar accuracy [27]. In another piece of work,
Lee and Brooks further demonstrated the effectiveness of s-
pline regression models through Pareto front analysis, pipeline
depth analysis, as well as multiprocessor heterogeneity anal-
ysis [26]. Guo et al. designed a co-training-like algorithm
to further enhance the accuracy of regression-based design
space modeling [15], which was inspired by the paradigm of
disagreement-based semi-supervised learning [44].

Lee and Brooks proposed the Composable Performance
Regression (CPR) technique to predict the performance of
multiple workloads executed on multiprocessor systems [28],
where the CPR technique is based on the combination of spline
regression models characterizing uniprocessor performance
and contention, respectively. Dubach et al. [6] proposed to
construct a cross-application regression model for superscalar
architectures executing different applications. Their cross-
application model linearly combines a number of application-
specific regression models (each of them is an ANN), which
predicts processor responses of configurations with respect
to an unseen application at moderate simulation cost for ex-
tracting the signature of that application. Khan et al. [24]
independently proposed a similar approach to construct a
cross-program regression model for a multicore design space.
Dubach et al. employed Support Vector Machine (SVM)
to model a joint architecture-compiler design space, and the
trained SVM can predict the compiler performance across
different architecture configurations [7]. Azizi et al. proposed
to characterize and predict the energy-performance trade-off



of a joint circuit-architecture design space with posynomial
functions [1]. The above regression techniques for DSE had
been shown to be accurate on predicting processor responses,
yet it is still not clear how they predict relative rankings of
configurations given a limited amount of architectural simula-
tions.

Our work is substantially different from the above investi-
gations. We no longer stick to the hard regression formulation
of DSE, but, to the best of our knowledge, we propose for the
first time to formulate DSE as a ranking problem. This new
formulation can help drastically reduce the number of required
simulations.

5.2. Analytical Modeling

Analytical modeling captures architect knowledge and allows
to estimate architecture behavior using few or no simulation.
Noonburg and Shen estimate the performance of superscalar
processors by probabilistically characterizing program paral-
lelism and machine parallelism [32]. Karkhanis and Smith
proposed a first-order performance model for superscalar pro-
cessors, which penalizes the ideal performance with miss
events (e.g., branch mispredictions, instruction cache misses,
and data cache misses) [23]. Eyerman et al. further extended
the above model by dividing the instruction execution flow
into intervals separated by different miss events [11]. Chan-
dra et al. proposed a probabilistic model to predict the extra
cache misses caused by cache contention between two differ-
ent threads on a CMP [3]. Eklov et al. proposed a statistical
cache contention model called StatCC to predict the perfor-
mance of a set of co-executed threads [10]. Chen and Aamodt
utilized Markov chain to accurately model throughput of mul-
ticore architectures running multi-threaded programs [4], and
their model was later extended to estimate the throughput
of multi-programmed many-core processors [5]. Sun et al.
proposed an analytical performance model called Moguls to
help architects quickly explore the design space of memory
hierarchies [40]. Nair et al. proposed a first-order mechanistic
analytical model for computing the architectural vulnerability
factor by estimating the occupancy of correct-path state via
inexpensive profiling [30].

Analytical modeling is not simulation-intensive, but it can
be difficult to grasp and integrate a large number of interacting
parameters within such models. In contrast, our technique is
applicable to large and complex design spaces. However, we
view analytical models as potentially complementary to rank-
ing models, due to the ability to integrate expert knowledge in
ranking models.

5.3. Fast Simulation Techniques

In addition to regression-based/ranking-based techniques
which reduce the total number of architectural simulations
for DSE, there are many fast simulation techniques which can
cut down the cost of each simulation.

Iyengar et al. proposed a metric of representativeness for
refined traces and developed a novel graph-based heuristic
to generate better refined traces [20]. Nussbaum and Smith
proposed to extract intrinsic program characteristics from a
program instruction trace, with which a compact synthetic in-
struction trace can be generated for simulation [33]. Eeckhout
et al. proposed an improved statistical simulation framework
employing a statistical flow graph to accurately characterize
the control flow behavior of a program [9]. To reduce sim-
ulation overhead for CMP design, Genbrugge and Eeckhout
proposed several statistical quantities to capture the behavior
of cache access and shared resource contentions that are criti-
cal to the performance of multi-programmed programs running
on CMPs [13, 14]. Hughes and Li proposed to leverage sta-
tistical characteristics that capture the behaviors of memory
sharing and inter-thread synchronization when constructing
synthetic multi-threaded programs [16].

There are also techniques which directly extract several
short but representative instruction phases from the original
program. SimPoint [38] clusters execution phases of programs
that are characterized by basic block vectors, and then takes
the cluster centroids as the representative of simulation phas-
es. SMARTS [43] selects representative instruction segments
from the original program based on statistical sampling theory,
which can identify the number of samples (i.e., instruction
segments) sufficient to achieve a user-specified confidence
interval of the performance.

Fast simulation techniques, which reduce the cost-per-
simulation, are orthogonal and again complementary to our
ranking-based DSE technique, by reducing the time required
to build the training set.

6. Conclusions and Future Work

In this paper, we argue that the information the architect mostly
needs during the DSE process is whether a given configura-
tion will perform better than another one, or better than any
other one seen so far, rather than precisely estimating the
performance of that configuration. Therefore, we propose to
formulate the DSE as a ranking problem where we train a
model to predict which of two architecture configurations will
perform best. We also present the ArchRanker framework
for ranking-based DSE, and compare it against ANN-based
regression.

We create three main types of DSE scenarios: constraint-
based DSE emulating the frequent case where the architect
has a given performance target (given speedup or power),
unconstrained DSE where we consider all possible pairwise
comparisons among the simulated configurations, and an it-
erative decision process which attempts to mimic even more
closely the DSE process. For each scenario (unicore/multicore,
time/power), we find that ArchRanker outperforms ANN on
average (over all scenario benchmarks). For instance, for
constraint-based DSE, the best configuration response predict-
ed by ArchRanker is 31.77% better than the one predicted



by ANN in the M-EDDP/ Time+Power scenario; for uncon-
strained DSE, ArchRanker makes 38.13% fewer incorrect
pairwise predictions than ANN on average, in the unicore time
scenario; and for the iterative DSE process, 90.82% fewer
incorrect decisions than ANN in the multicore time scenari-
0. Moreover, we show that an ANN regression model re-
quires from 154 % to 300 % more training simulations than
ArchRanker to achieve the same pairwise prediction accuracy.
Finally, we show that ArchRanker can be used to evaluate
the response gap between two configurations, and still out-
performs ANN on a task which is normally the purview of
value prediction models. In summary, ArchRanker realizes
the best of both worlds: better prediction accuracy on the key
information expected by the architect during the DSE process,
and smaller training time.

Future work will focus on incorporating expert knowledge
in ArchRanker for further improving prediction accuracy.
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