
Learning Unified Features from Natural and
Programming Languages for Locating Buggy Source Code∗

Xuan Huo and Ming Li and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{huox, lim, zhouzh}@lamda.nju.edu.com

Abstract
Bug reports provide an effective way for end-users
to disclose potential bugs hidden in a software
system, while automatically locating the potential
buggy source code according to a bug report re-
mains a great challenge in software maintenance.
Many previous studies treated the source code as
natural language by representing both the bug re-
port and source code based on bag-of-words fea-
ture representations, and correlate the bug report
and source code by measuring similarity in the
same lexical feature space. However, these ap-
proaches fail to consider the structure information
of source code which carries additional semantics
beyond the lexical terms. Such information is im-
portant in modeling program functionality. In this
paper, we propose a novel convolutional neural net-
work NP-CNN, which leverages both lexical and
program structure information to learn unified fea-
tures from natural language and source code in pro-
gramming language for automatically locating the
potential buggy source code according to bug re-
port. Experimental results on widely-used software
projects indicate that NP-CNN significantly outper-
forms the state-of-the-art methods in locating the
buggy source files.

1 Introduction
Software quality assurance is vital to the success of a software
system. As software systems become larger and more com-
plex, it is extremely difficult to identify every software defect
(or bug, informally) before its formal release due to the lim-
ited software testing resources and tight development sched-
ule. Thus, software systems are often shipped with bugs.

To facilitate fast and efficient identification and fixing of
the bugs in a released software system, bug reports, which
are documents written in natural language specifying the sit-
uations in which the software fails to behave as it is expected
or follow the technical requirements of the system. Bug re-
ports are generated by the end-users of the software and then

∗This research was supported by NSFC (61333014, 61422304,
61272217, 61321491), JiangsuSF(BK20131278) and NCET-13-
0275.

submitted to the software maintenance team. Once a bug re-
port is received and verified, the software maintenance team
would read the textual description of the bug report to locate
the potential buggy source files in the source code, and assign
appropriate developer to fix the bug accordingly. However,
for large and evolving software, the maintenance team may
receive a large number of bug reports over a period of time
and it is costly to manually locate the potential buggy source
files based on bug reports.

Bug localization, which aims to alleviate the burden of
software maintenance team by automatically locating poten-
tially buggy files in source code bases for a given bug report,
has drawn significant attention in software engineering com-
munity. To accomplish the goal, the key for bug localiza-
tion is to correlate the abnormal program behaviors written
in natural languages and the source code written in program-
ming languages that implement the corresponding function-
ality. Most of the state-of-the-art methods treat the source
code as natural language by representing both bug reports and
source files based on bag-of-words feature representations,
and correlate the bug reports and source files by measuring
similarity in the same feature space. For example, Lukins
et al. [2008] apply a generative probabilistic Latent Dirichlet
Allocation (LDA) to represent software code and bug reports
and locate the buggy files according to their similarities. Gay
et al. [2009] represent both source files and bug reports using
vector space model (VSM) based on which the similarities
between the buggy source files and a bug report are computed
for localizing the corresponding buggy files, and their experi-
ment results suggest that the VSM model may perform better
than the LDA model. Zhou et al. [2012] propose a revised
vector space model (rVSM), where similar historical bug re-
ports whose corresponding buggy files are further exploited
to improve the bug localization results obtained by simply
measuring the similarity between bug reports and source files.
Recently, Lam et al. [2015] employ autoencoder to learn fea-
tures that correlate the frequently occurred terms in bug re-
ports and source files in order to enhance the bag-of-words
features.

While enjoying the convenience of correlated the hetero-
geneous data in the same lexical feature space, these methods
also suffer from the loss of information when tailoring
programming language to natural language by ignoring
the program structure. The program structure specifies how

different statements interact with each other to accomplishing
certain functionality, which provides additional semantics
to the program functionality besides the lexical terms. For
example, assume a private string type variable path initial-
ized with a default value DEFAULT PATH, the following
two pieces of code, i.e., “path = getNewPath();
File f = File.open(path);” and “File f =
File.open(path); path = getNewPath();”,
may result in different program behaviors. Thus, to represent
the program functionality better, a richer feature representa-
tion which captures both lexical semantics of terms and the
program structure needs to be extracted from source code.
However, the enrichment of feature for source code lays the
bug reports and source files into two different feature spaces,
and consequently, increases the difficulties in measuring the
correlation between reports and source codes.

One question arises here: can we learn a unified feature
representation from both natural and programming language,
where the semantics in lexicon and program structure are cap-
tured and the correlations between bug reports and source
files for bug localization are carefully embedded. In this pa-
per, we propose a novel convolutional neural network called
NP-CNN (Natural language and Programming language Con-
volutional Neural Network) to learn unified feature from bug
report in natural language and source code in programming
language. This model mainly consists of two consecutive
parts. The first part is the intra-language feature extraction
layer, which extracts features based on multiple layers of
convolutional neurons using bug reports and source files, re-
spectively, where the convolution operation for source code
is particularly designed to reflect the program structure. The
second part is the cross-language feature fusion layer, which
combines the extracted features from bug reports and source
files into a unified representation in the purpose of correctly
identifying the related source code given a bug report. Exper-
imental results on widely-used software projects indicate that
learning unified feature by respecting the program structure
is beneficial and the proposed NP-CNN significantly outper-
forms the state-of-the-art bug localization methods.

The contributions of our work are in two folds:
• We propose a CNN-based deep neural network to learn

unified features from natural language and programming
language for locating buggy files.
• We design particular convolution operations with respect

to the program structure, which is able to capture se-
mantics of the program from both lexical and program-
structural perspectives.

The rest of this paper is organized as follows. In Section
2, we discuss several related work. In Section 3, we present
the proposed NP-CNN model. In Section 4, we report the
experimental results, and finally in Section 5, we conclude
the paper and issue some future works.

2 Related Work
Bug localization, which locates source files potentially re-
sponsible for the bugs reported in bug reports, is an important
but costly activity in software maintenance. Most existing ap-
proaches treated the source files as documents and formalized

the bug localization problem as a document retrieval problem.
Various models has been constructed to compute the similar-
ity or relevancy between the bug reports and the source files.
Many information retrieval based bug localization methods
have been proposed. Poshyvanyk et al. [2007] proposed a fea-
ture location model to mine buggy files based on a Latent Se-
mantic Indexing (LSI) model, which can identify the relation-
ship between reports and terms based on Singular Value De-
composition (SVD). Lukins et al. [2008] treated bug reports
as a mixture of various topics that spit out words with cer-
tain probabilities, so they applied a generative probabilistic
Latent Dirichlet Allocation (LDA) model for locating buggy
files. Gay et al. [2009] employed Vector Space Model (VSM)
based on concept localization to represent bug reports and
source code files as feature vectors, which is used to measure
the similarity between bug reports and source files. Zhou et
al. [2012] proposed BugLocator approach using revised Vec-
tor Space Model (rVSM), which is based on document length
and similar bugs that have been resolved before as new fea-
tures. However, all these models ignore the structural infor-
mation of software code, which may disclose important se-
mantics of the source files beyond the textual representation
of source files.

In natural language processing (NLP), deep learning is
applied to learn word vector representation. Collobert et
al. [2011] presented a multi-layer neural network architec-
ture that can handle a number of NLP tasks, which was de-
termined to avoid task-specific engineering. Kim [2014] con-
ducted a serious of experiments with CNN trained on top of
pre-trained word vectors, showing that a simple CNN with
little hyper parameter tuning achieves excellent results for
sentence classification tasks. Zhang et al. [2015] applied
temporal ConvNets to various large-scale text understanding
tasks, in which ConvNets do not require knowledge of words
or knowledge of syntax. Johnson and Zhang [2015] studied
CNN on text categorization to exploit the word order of text
data for text categorization, which showed that CNN provides
an alternative mechanism for effective use of word order.

Recently, deep learning is applied to tackle some software
engineering problems. White et al. [2015] tried deep learning
to induce high-quality model for code suggestion. Mou et
al. [2016], applied CNN on abstract syntax tree to detect code
snippets of certain patterns. Lam et al. [2015] combined auto
encoder with information retrieval based methods to locate
buggy files.

3 Convolutional Neural Networks for Natural
and Programming Languages

The goal of bug localization is to locate the potentially buggy
source files that produce the program behaviors specified in a
given bug report.

Let C = {c1, c2, · · · , cN1
} denotes the set of source code

files of a software project andR = {r1, r2, · · · , rN2
} denotes

the collection of bug reports received by the software mainte-
nance team, where N1, N2 are the number of source files and
bug reports, respectively. The bug reports and source files can
be collected from bug tracking systems (e.g., Bugzilla, Jira,
etc.) and history control systems (e.g., CVS, Git, etc.).

Unlike many existing methods [Gay et al., 2009; Zhou et
al., 2012] which represented bug reports and source codes
in the same lexical feature space and computed similarity to
identify their correlation, we formalize the bug localization as
a learning task, which attempts to learn a prediction function
f : R × C 7→ Y . yij ∈ Y = {+1,−1} indicates whether
a source code file cj ∈ C is related to a bug report ri ∈ R,
which can be obtained by investigating software commit logs
and bug report descriptions [Fischer et al., 2003]. The predic-
tion function f can be learned by minimizing the following
objective function

min
f

∑
i,j

L(f(ri, cj), yij) + λΩ(f), (1)

where L(·, ·) is the empirical loss and Ω(f) is a regulariza-
tion term imposing on the prediction function. The trade-off
between L(·, ·) and Ω(f) is balanced by λ.

We instantiate the learning task by proposing a novel con-
volutional neural network NP-CNN which takes the raw data
of bug reports and source codes as input and learns a unified
feature mapping ϕ(·, ·) for a given ri and cj , based on which
the prediction can be made with a subsequent linear output
layer.

Encoding

Convolutional network

for natural language

Convolutional network

for programming language

Fully connected network for feature fusion

Output

Bug report

report

Source files

a.java

Encoding

Input layer

Intra-language feature

extraction layers

Output layer

Cross-language feature

fusion layers

Figure 1: The general framework of NP-CNN.

The framework of NP-CNN is shown in Figure 1. The NP-
CNN model contains four parts: input layer, intra-language
feature extraction layers, cross-language feature fusion lay-
ers, and output layer. In order to feed the raw textual data
to convolutional layers for feature learning, bug reports and
source codes are firstly encoded in the input layer. To pre-
serve internal and local information, each text term is repre-
sented as a k-dimensional one-hot vector, where k is the size
of the vocabulary V . For example, suppose the vocabulary
V ={“bug”, “defective”, “file”, “is”, “this”}, and
the sentence D = “This file is defective” can be
represented as:

 this file is defective

Based on the one-hot encoding, a bug report or a source file
with n regions of sentences can be represented byX ∈ Rn×k,
which is then fed into subsequent convolutional layers. Such
encoding directly transforms textual data to the raw binary
representation with no requirement on domain knowledge for
data representation. Such representation is shown to be effec-
tive in processing textual data [Kim, 2014].

After the preprocessing of the input layer, the encoded
data Xr

i of a bug report ri and Xc
j of a source code file

cj are then passed to intra-language feature extraction lay-
ers. In these layers, bug reports and source codes are pro-
cessed separately by different convolutional networks to ex-
tract middle-level intra-language features, where the convo-
lution operations are designed with respect to different char-
acteristics of natural language and programming language.
Then, the intra-language features from bug report and source
code are further fused into a unified feature representation by
the cross-language feature fusion layers, followed by a linear
output layer mapping the unified feature to Y which indicates
whether cj is related to ri.

The key of the NP-CNN model lies in the intra-language
feature extraction layers and cross-language feature fusion
layer, which are discussed in detail in the following subsec-
tions.

3.1 Intra-language Feature Extraction Layers
Intra-language feature extraction layers employ separate con-
volutional neural networks to extract intra-language features
form natural language and programming language. Since ex-
tracting features from natural language using CNN has been
widely studied [Johnson and Zhang, 2015], we follow the
standard approach to extract features from bug reports. Thus,
we focus on building convolutional networks for source code
in programming language.

Programming language, although in textual format, differs
from natural language mainly in two aspects. First, the basic
language component carrying meaningful semantics in natu-
ral language is word or term, and the semantics of the natural
language can be inferred from a bag of words. By contrast,
in programming language the basic language component car-
rying meaningful semantics is statement, and the semantics
of the programming language can be inferred from the se-
mantics on multiple statements plus the way how these state-
ments interact with each other along the execution path. Thus,
to extract features from programming language, the convolu-
tion operations should explicitly respect to the atomicity of
statements in semantics. Second, natural language organizes
words in a “flat” way while programming language organizes
its statements in a “structured” way to produce richer seman-
tics. For example, a branching structure “if-then-else”
defines two parallel groups of statements. Each group inter-
acts with the statements before and after the branching block
while there is no interaction between the two groups. Thus, to
extract features from programming language, the convolution
operations should obey the program structure defined by the

Convolutional layer with

multiple filter widths
Pooling layer to output

representation of source code

Pooling layer Fully connected layerSource code

Public static void ...

int a = 10;

boolean flag = true;

System.out.println(a);

……

……

l lines
l lines

Convolutional layer with m filters

n-d+1

Figure 2: The overall structure of convolutional neural network for programming language. The first convolutional and pooling
layer aims to represent the semantics of a statement based on the tokens within the statement, and the subsequent convolution
and pooling layer aims to model the semantics conveyed by the interactions between statements with respect to the program
structure while preserving the integrity of statements. The fully connected networks are connected to cross-language feature
fusion layers.

programming languages.
Based on the aforementioned considerations, we propose

the substructure of NP-CNN responsible for extracting fea-
tures from source code based on convolutional neural net-
work. The network structure is specified in Figure 2. The
first convolutional and pooling layer aims to represent the se-
mantics of a statement based on the tokens within the state-
ment, and the subsequent convolution and pooling layers aim
to model the semantics conveyed by the interactions between
statements with respect to the program structure while pre-
serving the integrity of statements.

Suppose tp ∈ Rk is a k-dimensional vector correspond-
ing to the p-th token and a window of d tokens is represented
as sq ∈ Rdk. The first convolutional layer employs a filter
w ∈ Rdk and a non-linear activation function σ to convert a
statement of n words into a new vector z ∈ Rn−d+1. Since
the length of each sentence is different, the extracted features
cannot be fed directly to a fixed-size neural layer. Therefore,
we fix the number of pooling units and dynamically deter-
mine the pooling region size on each data point, which has
been shown to be efficient in previous works [Zhang et al.,
2015; Johnson and Zhang, 2015]. It is noteworthy that each
row of the feature map represents one line of code after the
first convolutional and pooling layer, and consequently the
integrity of the statements is well-preserved.

The subsequent convolutional and pooling layer aims to
model high order interactions between statements in differ-
ent granularity by varying the size of convolution windows.
For example, the first filter operates on the window of fea-
tures with d = 2, which can be viewed that the informa-
tion between two consecutive statements along the execu-
tion path is extracted and represented. The second filter on
the window with d = 3 is viewed that the filter extracts
features from three consecutive statements along the execu-
tion path, and so on. To avoid the poor performance caused
by using a large window size [Collobert and Weston, 2008;
Kim, 2014], we slice the program into different building
blocks [Binkley et al., 2014] and set the maximal window size
as the average length of program blocks. Moreover, we pad

the window locating on the boundary of branches and loops
to ensure the interactions between statements do not violate
the execution path.

3.2 Cross-language Feature Fusion Layers

In the cross-language feature fusion layers, we employ a fully
connected neural network to fuse middle-level features ex-
tracted from bug reports and source files to generate a unified
feature representation, where the network is learned in order
to facilitate the determination on whether the given source
code file is related to the given bug report based on the uni-
fied feature.

In most cases of bug localization, a reported bug may be
only related to one or only a few source code files, while a
large number of source code files are irrelevant to the given
bug report. Such an imbalance nature increases the difficulty
in learning a well-performing prediction function based on
the unified feature.

To address this problem, we propose to learn the unified
feature that may counteract the negative influence of the im-
balanced data in the subsequent learning of prediction func-
tion. Inspired by [Zhou and Liu, 2006], we introduce an un-
equal misclassification cost according to the imbalance ratio
and train the fully connected network in a cost-sensitive man-
ner.

Let costn denote the cost of incorrectly associating an ir-
relevant source code file to a bug report and costp denote the
cost of missing a buggy source code file that is responsible
for the reported bugs. The weight of the fully connected net-
works w can be learned by minimizing the following objec-
tive function based on SGD (stochastic gradient descent).

min
w

∑
i,j

[costnL(zri , z
c
j , yij ;w)(1− yij)

+costpL(zri , z
c
i , yij ;w)(1 + yij)] + λ||w||2

(2)

where L is the loss function and λ is the trade-off parameter.

4 Experiments
To evaluate the effectiveness of NP-CNN, we conduct exper-
iments on open source software projects and compare with
several state-of-the-art bug localization methods.

4.1 Experiment Settings
The data sets used in the experiments are extracted from four
well-known open source software projects and the statistics
are shown in Table 1.

The data set JDT (Java Development Tools) 1 is an Eclipse
project used for plug-ins support and development of any Java
applications. The project PF (Eclipse Platform) 2 contains set
of frameworks and common services that make up Eclipse
infrastructures. Another project PDE (Plug-in Development
Environment) 3 is a tool to create and deploy features and
plug-ins of Eclipse. We also investigate the AspectJ 4 project
to evaluate the performance, which is an aspect-oriented ex-
tension to the Java programming language. All the projects
and labels of software code and bug reports can be extracted
from bug tracking system and the CSV/Git version control
system, which have been widely used in previous studies
[Zhou et al., 2012; Lam et al., 2015].

Table 1: Statistics of our data sets.

Data sets # fixed bug reports # source files # avg. buggy
files per report

JDT 12,826 2,272 4.39
PF 14,893 1,012 6.79

PDE 4,034 2,970 8.34
AspectJ 1,734 1,136 1.73

As indicated by Table 1, the number of candidate source
files is large, but the data sets are highly imbalanced in that
only a few source files are related to a given bug report.
Therefore, we use AUC, which has been widely applied to
evaluate the learning performance in imbalanced learning
problem. Besides, we also evaluate the performance using
MAP (Mean Average Precision) and Top k Rank, which are
widely used for evaluating the cost-effectiveness of bug lo-
calization performance [Zhou et al., 2012; Ye et al., 2014;
Lam et al., 2015].

We compare the proposed model NP-CNN with following
baseline methods:

• Buglocator [Zhou et al., 2012]: a state-of-the-art bug
localization method which employs the revised Vector
Space model to measure the similarity between bug re-
ports to identify potential buggy files related to a given
bug report.

• Two-phase [Kim et al., 2013]: a state-of-the-art bug
localization model that firstly uses Naive Bayes to fil-
ter uninformative bug reports and then use vector space
model to predict buggy files.

1http://http://www.eclipse.org/jdt/
2http://projects.eclipse.org/projects/eclipse.platform
3http://www.eclipse.org/pde/
4http://www.eclipse.org/aspectj/index.php

• HyLoc [Lam et al., 2015]: a recently proposed bug lo-
calization model which employs auto-encoder and vec-
tor space model to identify potential buggy files related
to a given bug report.
• CNN: a straightforward CNN-based approach which

merges textual bug reports and textual source code to-
gether and feeds them directly to a CNN.
• US-CNN (CNN with Under Sampling): a variant of NP-

CNN, which addresses the imbalanced problem by ap-
plying under-sampling to training set in advance to re-
duce the number of negative pairs of bug reports to irrel-
evant source files.
• N-CNN (Natural language CNN): a variant of NP-CNN

where no program structure is considered in “intra-
language feature extraction layers” for source code and
source code is processed in the same way as the textual
bug reports.

For Buglocator and Two-Phase, we use the same parameter
settings suggested in [Zhou et al., 2012; Kim et al., 2013], re-
spectively. For all data sets, we fix the activation function to
σ(x) = max(x, 0). We use windows (d) of 2,3,4,5 with 100
feature maps each, and roughly 5,000 words that appear most
frequently in the bug reports and software code are used in the
experiment. In addition, we use two techniques to improve
prediction performance: response normalization [Krizhevsky
et al., 2012] and dropout [Hinton et al., 2012]. Response nor-
malization scales the output of the pooling layer z by multi-
plying (1+|z2|−1/2). Another method dropout is used to pre-
vent co-adaptation of hidden units by randomly dropping out
values. In our experiment, we set dropout probability p=0.5
in fusion layer.

4.2 Experiment Results
For each data set, 10-fold cross validation is repeated 10 times
and the average performance of all the compared methods
with respect to AUC and MAP are tabulated in Table 2 and
Table 3, respectively, where the best performance on each
data set is boldfaced, and the performance with respect to Top
k Rank is depicted in Figure 3. We conduct Mann-Whitney
test at 95% confidence level. If NP-CNN significantly out-
performs a compared method, the inferior performance of the
compared method would be marked with “◦”, and the value
that significant better than NP-CNN is marked with “•”. The
highest value of each data set is marked in bold.

It can be observed from the tables that the proposed NP-
CNN achieves the best average performance (0.891) in terms
of AUC, which improves BugLocator (0.747) by 19.2%,
Two-phase (0.738) by 20.7%, HyLoc (0.807) by 10.4%, and
NP-CNN achieves best performance (0.557) with respect to
MAP on almost all data sets except for JDT. The superiority
of the NP-CNN is statistically significant.

Figure 3 also indicates the superiority of NP-CNN over the
other compared methods with respect to Top k Rank. NP-
CNN can achieve an average Top k Rank at 0.881, which im-
proves the average value of BugLocator (0.691) by 27.4% ,
Two-phase (0.600) by 46.8% and HyLoc (0.752) by 17.2%.

The superior performance of NP-CNN over the state-of-
the-art bug localization methods indicates that NP-CNN is

(a) JDT (b) PF (c) PDE (d) AspectJ

P
er

ce
n

ta
g

e
o

f
b

u
g

 r
ep

o
rt

s

BugLocator

Two-phase

HyLoc

CNN

US-CNN

N-CNN

NP-CNN

Figure 3: Top 10 Rank of the compared methods on all data sets. The higher the metric value, the better the prediction
performance. It can be easily observed that NP-CNN performs the best on all data sets.

Table 2: MAP of the compared methods on all data sets. The
highest value of each column is marked in bold. The value
that significant worse than NP-CNN is marked with ◦. The
value that significant better than NP-CNN is marked with •.

Method JDT PF PDE AspectJ Avg.

BugLocator .441 ◦ .350 ◦ .422 ◦ .418 ◦ .408
Two-phase .372 ◦ .398 ◦ .381 ◦ .397 ◦ .387

HyLoc .455 ◦ .410 ◦ .552 ◦ .433 ◦ .463
CNN .517 ◦ .483 ◦ .582 ◦ .512 ◦ .524

US-CNN .527 .496 ◦ .574 ◦ .532 .532
N-CNN .508 ◦ .493 ◦ .584 ◦ .523 ◦ .527

NP-CNN .522 .537 .624 .545 .557

Table 3: AUC of the compared methods on all data sets. The
highest value of each column is marked in bold. The value
that significant worse than NP-CNN is marked with ◦. The
value that significant better than NP-CNN is marked with •.

Method JDT PF PDE AspectJ Avg.

BugLocator .781 ◦ .772 ◦ .753 ◦ .683 ◦ .747
Two-phase .724 ◦ .803 ◦ .763 ◦ .664 ◦ .738

HyLoc .813 ◦ .830 ◦ .824 ◦ .761 ◦ .807
CNN .853 .851 ◦ .863 ◦ .849 .854

US-CNN .872 ◦ .865 ◦ .857 ◦ .842 ◦ .859
N-CNN .866 ◦ .847 ◦ .862 ◦ .848 .856

NP-CNN .881 .913 .914 .857 .891

effective in learning unified features from natural language
and programming language for bug localization. Comparing
to previous bug localization models, BugLocator and Two-
phase model use vector space model to represent bug reports
and source files, respectively. They use cosine similarity be-
tween source files and bug reports to identify bugs, but NP-
CNN learns unified features of natural and programming lan-
guage leading to a better representation. The HyLoc model
uses auto-encoder to search for the links between text terms
and source code terms, which can only learn their shallow
and partial relationship. NP-CNN uses deep convolutional
network structure, which can extracts more complete and se-
mantic features.

We further evaluate the effectiveness of intra-language fea-
ture extraction layers and cross-language feature fusion lay-
ers, which are the key parts of the NP-CNN model. It can

be observed from Table 2 and Table 3 that NP-CNN outper-
forms N-CNN 3.7% in terms of AUC and 5.6% in terms of
MAP, which suggests our convolutional neural network for
programming language can extract better inner features from
source code than natural language network.

In addition, to evaluate the effectiveness of cost-sensitive
cross-language fusion layer, we use US-CNN for comparison,
a variant implementation of NP-CNN which first uses under-
sampling operation on training data sets to discard negative
pairs until the number equal to the positive ones. The sam-
pling procedure repeats for 10 times and the results are en-
sembled at last. It can be clearly observed from Table 2 and
Table 3 that NP-CNN performs better than US-CNN on all
data sets in terms of MAP and AUC.

In summary, the experimental results suggest that NP-CNN
can learn unified feature representation from natural and pro-
gramming languages to facilitate better bug localization.

5 Conclusion
In this paper, we propose a novel convolutional neural net-
work called NP-CNN to learn unified features from natural
language and source code in programming language for bug
localization problems, where particular convolution opera-
tions that reflect the program structure are carefully designed
to generate features that capture semantics from both lexicon
and program structure. Experimental results on widely-used
software projects indicate that learning unified feature by re-
specting to the program structure is beneficial and the pro-
posed NP-CNN significantly outperforms the state-of-the-art
bug localization methods.

NP-CNN exploits the program structure by explicitly mod-
eling the high-order interactions between statements. Com-
bining richer program structure information derived from
program analysis tools for extracting features from program-
ming languages will be investigated in future. Moreover, in-
corporating additional data to enrich the structure of NP-CNN
is also another interesting future work.

References
[Binkley et al., 2014] D. Binkley, N. Gold, M. Harman,

S. Islam, J. Krinke, and S. Yoo. Orbs: Language-
independent program slicing. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 109–120, Hong Kong,
China, 2014.

[Collobert and Weston, 2008] R. Collobert and J. Weston. A
unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning,
pages 160–167, Helsinki, Finland, 2008.

[Collobert et al., 2011] R. Collobert, J. Weston, L. Bottou,
M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural lan-
guage processing (almost) from scratch. The Journal of
Machine Learning Research, 12:2493–2537, 2011.

[Fischer et al., 2003] M. Fischer, M. Pinzger, and H. Gall.
Populating a release history database from version control
and bug tracking systems. In Proceedings of the 19th In-
ternational Conference on Software Maintenance, pages
23–32, Amsterdam, The Netherlands, 2003.

[Gay et al., 2009] G. Gay, S. Haiduc, A. Marcus, and
T. Menzies. On the use of relevance feedback in ir-based
concept location. In Proceedings of the 25th International
Conference on Software Maintenance, pages 351–360, Ed-
monton, Canada, 2009.

[Hinton et al., 2012] G. E. Hinton, N. Srivastava,
A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation
of feature detectors. arXiv:1207.0580, 2012.

[Johnson and Zhang, 2015] R. Johnson and T. Zhang. Effec-
tive use of word order for text categorization with convo-
lutional neural networks. In Proceedings of the Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pages 103–112, Denver, CO, USA, 2015.

[Kim et al., 2013] D. Kim, A. Zeller, Y. Tao, and S. Kim.
Where should we fix this bug? a two-phase recommenda-
tion model. IEEE Transactions on Software Engineering,
99(1):1, 2013.

[Kim, 2014] Y. Kim. Convolutional neural networks for sen-
tence classification. In Proceedings of Conference on Em-
pirical Methods in Natural Language Processing, pages
1746–1751, Doha, Qatar, 2014.

[Krizhevsky et al., 2012] A. Krizhevsky, I. Sutskever, and
G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 1097–1105, Lake Tahoe,
NV, USA, 2012.

[Lam et al., 2015] A. N. Lam, A. T. Nguyen, H. A. Nguyen,
and T. N. Nguyen. Combining deep learning with infor-
mation retrieval to localize buggy files for bug reports. In
Proceedings of the 28th International Conference on Au-
tomated software Engineering, pages 476–481, Lincoln,
NE, USA, 2015.

[Lukins et al., 2008] S. K. Lukins, N. Kraft, L. H. Etzkorn,
et al. Source code retrieval for bug localization using latent
dirichlet allocation. In Proceedings of 15th Working Con-
ference on Reverse Engineering, pages 155–164, Antwerp,
Belgium, 2008.

[Mou et al., 2016] L. Mou, G. Li, L. Zhang, T. Wang, and
Z. Jin. Convolutional neural networks over tree struc-

tures for programming language processing. In Proceed-
ings of the 13th AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, 2016.

[Poshyvanyk et al., 2007] D. Poshyvanyk, Y.-G. Gueheneuc,
A. Marcus, G. Antoniol, and V. C. Rajlich. Feature loca-
tion using probabilistic ranking of methods based on exe-
cution scenarios and information retrieval. IEEE Transac-
tions on Software Engineering, 33(6):420–432, 2007.

[White et al., 2015] M. White, C. Vendome, M. Linares-
Vásquez, and D. Poshyvanyk. Toward deep learning soft-
ware repositories. In Proceedings of the 12th IEEE Work-
ing Conference on Mining Software Repositories, pages
334–345, Florence, Italy, 2015.

[Ye et al., 2014] X. Ye, R. Bunescu, and C. Liu. Learning
to rank relevant files for bug reports using domain knowl-
edge. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing, pages 689–699, Hong Kong, China, 2014.

[Zhang et al., 2015] X. Zhang, J. Zhao, and Y. LeCun.
Character-level convolutional networks for text classifi-
cation. In Advances in Neural Information Processing
Systems, Montreal, Canada, pages 649–657, Montreal,
Canada, 2015.

[Zhou and Liu, 2006] Z.-H. Zhou and X.-Y. Liu. Train-
ing cost-sensitive neural networks with methods address-
ing the class imbalance problem. IEEE Transactions on
Knowledge and Data Engineering, 18(1):63–77, 2006.

[Zhou et al., 2012] J. Zhou, H. Zhang, and D. Lo. Where
should the bugs be fixed? more accurate information
retrieval-based bug localization based on bug reports.
In Proceedings of the 34th International Conference on
Software Engineering, pages 14–24, Zurich, Switzerland,
2012.

