
Improving Deep Forest by Confidence Screening
Ming Pang1,2, Kai-Ming Ting3, Peng Zhao1,2, Zhi-Hua Zhou1,2

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China

3School of Engineering and Information Technology, Federation University, Australia
Email: 1,2{pangm, zhaop, zhouzh}@lamda.nju.edu.cn 3kaiming.ting@federation.edu.au

Abstract—Most studies about deep learning are based on
neural network models, where many layers of parameterized
nonlinear differentiable modules are trained by backpropagation.
Recently, it has been shown that deep learning can also be
realized by non-differentiable modules without backpropagation
training called deep forest. The developed representation learning
process is based on a cascade of cascades of decision tree forests,
where the high memory requirement and the high time cost
inhibit the training of large models. In this paper, we propose
a simple yet effective approach to improve the efficiency of
deep forest. The key idea is to pass the instances with high
confidence directly to the final stage rather than passing through
all the levels. We also provide a theoretical analysis suggesting
a means to vary the model complexity from low to high as
the level increases in the cascade, which further reduces the
memory requirement and time cost. Our experiments show that
the proposed approach achieves highly competitive predictive
performance with significantly reduced time cost and memory
requirement by up to one order of magnitude.

I. INTRODUCTION

Deep learning has achieved great success in various applica-
tions, particularly with visual and speech information [1], [2].
Most studies about deep learning are based on neural network
models, or more accurately, many layers of parameterized non-
linear differentiable modules that can be trained by backpropa-
gation. By recognizing that the keys of deep learning may lie in
the layer-by-layer processing, in-model feature transformation
and sufficient model complexity, Zhou and Feng [3] proposed
a deep learning method named gcForest, which is realized by
non-differentiable modules without backpropagation training.

Essentially, gcForest is a novel decision tree ensemble
method with predictive accuracy highly competitive to deep
neural networks in a broad range of tasks. Besides, gcForest
is much easier to train because it has fewer hyper-parameters.
It has been shown that gcForest can achieve high predictive
accuracy on datasets across different domains by using almost
the same settings of hyper-parameters. Another advantage is
that the model complexity of gcForest can be determined
automatically for different training datasets, enabling gcForest
to perform well even on small-scale datasets. In contrast, deep
neural networks usually require a huge amount of training data
which prevent them from being applied to small-scale datasets.

A deep forest ensemble with a cascade structure enables gc-
Forest to do representation learning. In this cascade structure,
each level consists of an ensemble of decision tree forests [4],
[5], i.e., an ensemble of ensembles [6]. Each level receives a
new set of features as input which is the output of its preceding

level. For textual or structural data, gcForest further enhances
its representational learning ability by a technique called multi-
grained scanning.

Although the results in [7] suggest that larger models might
tend to offer better accuracy, Zhou and Feng [3] have not tried
larger models with more grains and larger number of forests
and trees (in each forest) which is limited by the high memory
requirement and time cost.

We identify that the main cause of this limitation owes much
to two aspects. Firstly, gcForest passes all instances through
all levels of the cascade, leading to a linear increase of time
complexity w.r.t. the number of levels. Secondly, multi-grained
scanning usually converts one (original) instance into hundreds
or even thousands of new instances which significantly in-
creases the number of training instances and also produces a
high-dimensional input for the following cascade procedure.

To address these issues, we introduce a confidence screening
mechanism in the general framework of deep forest, with the
aim to reduce memory requirement and time cost. Specifically,
the confidence screening categorizes instances at every level
of the cascade into two subsets: one is easy to predict; and
the other is hard. If an instance is easy to predict, its final
prediction is produced at the current level; only if an instance
is hard to predict, it needs to go through the next level (and
potentially all levels in the cascade).

In addition, we provide a theoretical analysis which suggests
a means to vary the model complexity from low to high as
the level increases in the cascade. This design further reduces
the memory requirement and time cost at the first few levels.
Furthermore, we adopt a subsampling regime to significantly
reduce the number of instances generated in the multi-grained
scanning process.

In a nutshell, we propose an improved deep forest called
gcForestcs which is based on the confidence screening mecha-
nism, coupled with a method to vary model complexity and the
subsampling multi-grained scanning. Our experiments show
that gcForestcs achieves predictive accuracy comparable to or
better than gcForest. This is achieved with up to an order of
magnitude lower memory requirement and faster runtime.

The rest of this paper is organized as follows. Section II pro-
poses our method gcForestcs. Section III gives an analysis for
the confidence screening mechanism. Section IV provides the
discussion. Section V reports the empirical results. Section VI
studies the influence of confidence screening. Section VII
concludes this paper.

In
pu

t	F
ea
tu
re

Ve
ct
or Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

Level	1 Level	2 Level	T

Ave. Max

Fi
na

lP
re
di
ct
io
n

concatenate

Y

N N

Y

N

Y

GateGateGate

(a) Cascade forest with confidence screening

R
aw

 In
pu

t F
ea

tu
re

s 40
0-

di
m 10

0-
di

m
Sl

id
in

g

Forest A

Forest B

30

3-
di

m
3-

di
m

Concatenate

90
-dim

90
-dim

Sl
id

in
g

Sliding

20×20 input

10-dim

10

10

10

3-
di

m
3-

di
m

Concatenate

30
-dim

30
-dim

Forest A

Forest B

For sequence data

For image-style data

10
0-

di
m

301 instances

10
0-

di
m

30 instances

10

10

su
bs
am

pl
in
g

su
bs
am

pl
in
g

(b) Feature re-representation using sliding window scanning with subsampling

Fig. 1: gcForestcs: illustration of the cascade forest structure with confidence screening and feature re-representation using sliding window
scanning with subsampling regime. (a) Suppose there are two random forests (black) and two completely-random forests (blue) at each level
of the cascade. For a three-class problem, each forest outputs a three-dimensional class vector, which is concatenated for re-representation
of the original input. Instances with high prediction confidence (Y) at level i are predicted directly—they do not go through all the levels.
Only instances with low prediction confidence (N) traverse to the next level. (b) Suppose there are three classes. Raw features are 400-dim,
sliding window is 100-dim and subsampling size is 30 for the sequence data; raw features are 20×20-dim, sliding window is 10×10-dim
and subsampling size is 10 for the image-style data.

II. THE PROPOSED APPROACH GCFORESTCS

The new deep forest approach gcForestcs has the key
confidence screening mechanism coupled with variable model
complexity and subsampling multi-grained scanning to reduce
the memory requirement and time cost of deep forest.

Rather than requiring all instances to go through all levels
of cascade, we reduce the computation by requiring selective
instances to go through the next level. The selection criterion
is based on the prediction confidence which is the maximum
value of the estimated class vector of one instance. For exam-
ple, in a 3-class classification problem, as shown in Figure 2,
the estimated class vector of an instance is [0.7, 0.2, 0.1], then
its prediction confidence is 0.7.

The basic idea is that an instance is pushed to the next level
only if it is determined to require a higher level of learning;
otherwise, it is predicted using the model at the current level.
Based on this idea, we propose the deep forest structure with
gates for confidence screening as shown in Figure 1(a).

A deep forest model with confidence screening can be for-
malized as follows. Consider the supervised learning problem
of learning a mapping from the feature space X to the label
space Y , where Y = {1, 2, . . . , C}. Let Z = [0, 1]C and
training set S = ((x1, y1), . . . , (xm, ym)) be drawn i.i.d. from

Forest

… …

0.7
0.2
0.1

[

[

0.8
0.0
0.2

[

[

0.6
0.4
0.0

[

[

Ave. 0.7
0.2
0.1

[

[

𝑥 Class
Vector

Fig. 2: Illustration of class vector generation from [3]. Each compo-
nent of the final class vector is an average of the outputs of individual
trees. Different shapes in leaf nodes denote different classes.

distribution D. A deep forest model with confidence screening
can be defined by a triplet (h, f ,κ) where

• h = (h1, . . . , hT), where ht is the ensemble of forests at
level t, and ht is a member of hypothesis class Ht.

• f = (f1, . . . , fT), where ft is the cascade of ensembles
of forests up to level t.

• κ = (κ1, . . . , κT), where κt is a screener function:
κt(x) = 1 if x is predicted by ft, κt(x) = 0 otherwise.

At level t ∈ {1, . . . , T}, ft: X → Z is defined as follows:

ft(x) =

{
h1(x) t = 1,
ht

(
[x, ft−1(x)]

)
t > 1.

(1)

At every level t, ht(·) and ft(·) output a class vector
[pt1, . . . , p

t
C], where pi is the prediction confidence of class

i. The input of ht is [x, ft−1(x)] except at level t = 1, where
its input is x.

Screener κt(·) at level t is defined based on prediction
confidence and confidence threshold ηt.

κt(x) =

{
1 maxc∈{1,...,C}[ft(x)]c > ηt,
0 otherwise. (2)

Let κ−1
t (1) denote the set of instances such that κt(x) = 1,

which is the set of instances with high confidence at level t.
κ−1
t (0) is similarly defined for those with low confidence.
At level t, if the prediction confidence of one instance is

larger than threshold ηt, then its final prediction is produced
at the current level; otherwise it needs to go through the next
level (and potentially all levels in the cascade).

Each triplet (h, f ,κ) defines a deep forest model with
confidence screening g : X → Y as follows:

g(x) = argmax
c∈{1,...,C}

[
ft′(x)

]
c
, (3)

where t′ = argt∈{1,...,T} κt(x) = 1.
The key issue here is how to set the confidence threshold

at each level. In principle, one can define an optimization

Algorithm 1 gcForestcs
Input: Training set S, validation set Sv , learning algorithm A
and the maximal number of cascade levels T .
Output: The gcForestcs model g.
Initialize: S1 = S, ℓ0 = 1 and t = 1
Process:

1: while t ≤ T do
2: ht = A(St).
3: Get ft according to Eq. (1).
4: Get κt according to Eq. (2).
5: Get gt according to Eq. (3).
6: Compute the validation error ℓt = LSv

(gt)
7: if ℓt > ℓt−1 then
8: return g.
9: end if

10: g = gt.
11: St+1 = St \ κ−1

t (1).
12: t = t+ 1.
13: end while
14: return g.

framework in which the confidence threshold at each level
is set to trade off between minimizing the expected number
of instances to be passed to the next level and maximizing
the expected number of instances that can be corrected at
the next level (which are misclassified at the current level.)
Unfortunately, finding this optimum is a difficult problem.

Instead, we use a simple rule to produce an effective cascade
forest which is highly efficient. The prediction confidence
threshold ηt at level t is determined automatically based on
the cross-validated error rate ϵt of all the training instances.
Let hyper-parameter a < 1 be a fraction of ϵt. All the training
instances are sorted in descending order of their prediction
confidences, where ci is the prediction confidence of xi. ηt is
set according to the following formulation:

ηt = min{ck|L(x1, . . . ,xk) < aϵt, k ∈ [1,m]}, (4)

where L(x1, . . . ,xk) = 1
k

∑k
i=1 1[gt(xi) ̸= yi] is the error

rate of the k instances with the largest prediction confidences.
Note that a is the only additional hyper-parameter for confi-
dence screening, compared with gcForest.

Variable model complexity. Because the remaining in-
stances become increasingly hard-to-predict as the level in-
creases, gcForestcs uses increasingly complex forests at high
levels, i.e., gcForestcs increases the number of trees in each
forest linearly as the number of training instances decreases.

The above strategy follows the result of the theoretical
analysis in Section III. It suggests that varying the model
complexity from low to high as the level increases in the
cascade can lead to better generalization performance. This
design further reduces memory requirement and time cost;
and the model complexity only increases as the level increases
when it is most needed to produce an accurate model for hard-
to-predict instances.

SN
T

SY
2 SN

2

S

SY
1 SN

1

SY
3 …

level 1

level 2

level 3

level T

…

h1

h2

h3

hT

Fig. 3: The structure of the cascade forest with confidence screening.
There is a total of T levels, where the instances are split into two parts
at each level: the left part contains instances with high confidence,
and the right part contains those with low confidence and thus needs
to be further processed at higher levels.

Subsampling multi-grained scanning. Multi-grained scan-
ning in gcForest [3] increases the memory consumption and
runtime heavily. To address this issue, as suggested in [3],
we use subsampling in multi-grained scanning. Specifically,
we randomly sample from the set of the converted instances
produced in multi-grained scanning. As Figure 1(b) illustrates,
subsampling not only reduces the number of converted in-
stances, but also reduces the number of dimensions of the
transformed features by an order of magnitude from 903
to 90 dimensions. At each level, subsampling multi-grained
scanning generates new transformed features, and the features
from the recent three levels are concatenated to classify the
remaining instances which are fewer and “harder”.

Algorithm 1 summarizes the proposed gcForestcs.1

III. ANALYSIS

In this section, we provide an analysis for both the confi-
dence screening and variable model complexity. In particular,
we are interested in the effect of splitting all instances into
two parts according to the prediction confidences, and thus, we
ignore the effect of concatenation of previous label predictions
in the analysis.

Let S = {(xi, yi)}mi=1 be the training set of size m drawn
according to the underlying distribution D, where xi ∈ Rd

and yi ∈ Y = {1, 2, . . . C} is the associated class label. Let
the loss function be ℓ : Y ×Y → R+. For a given hypothesis
h, its risk R(h) and empirical risk R̂S(h) are:

R(h) = E(x,y)∼D[ℓ(h(x), y)], R̂S(h) =
1

m

m∑
i=1

ℓ(h(xi), yi).

An illustration of the cascade structure is given in Figure 3.
Suppose the cascade has T levels, and has h = (h1, . . . , hT)
with the classifier at level t ht : X → [−1,+1]; and ht is a
member of the hypothesis set Ht. Note that we consider the
two-class problem only here for ease of analysis. Furthermore,
we denote Ht = {x → κt(x)ht(x) : κt ∈ Kt, ht ∈ Ht}
as the family of the products of the screener function and

1Note that subsampling multi-grained scanning can be used to provide a
new representation at each level.

the classifier at level t. Then we have the following results
regarding the generalization bound of the learned model.

Theorem 1. Assume that the function in Ht takes values in
[−1,+1] for all t ∈ {1, . . . , T}, and the training sample S is
of size m drawn i.i.d. from underlying distribution D. Then,
for any δ > 0, with probability at least 1 − δ, the following
holds for all h with T levels cascade forest:

R(h) ≤ R̂S(h) +

T∑
t=1

min
(
4R̂S(Ht),

mt

m

)
+ Õ

(
T

√
log T

m

)
,

where R̂S is the empirical Rademacher complexity, and mt =
|SY

t | is the number of screened instances at level t.

Proof. First, we introduce the convex ensembles with multiple
hypothesis set gα. For any α ∈ ∆T , denote gα as follows,

gα(x) =

T∑
t=1

αtκt(x)ht(x),

where ∆T is the simplex in RT . Fix ρ > 0, since gα is a
convex combination of the mappings x → κt(x)ht(x), and
note that h(x) =

∑T
t=1 κt(x)ht(x), using Theorem 1 in [8],

we can obtain

R(h) ≤ inf
α∈∆T

[
R̂S,ρ(gα) +

4

ρ

T∑
t=1

αtR̂S(Ht)

]

+ C(m, p) +

√
log(4/δ)

2m
,

(5)

where C(m, ρ) = 2
ρ

√
log T
m +

√
log T
ρ2m log

(
ρ2m
log T

)
, and

R̂S,ρ(gα) =
1
m

∑T
t=1

∑
κ(xi,k)=1 I[yiαtht(xi) < ρ]. I[e(·)] is

the indicator function taking 1 if e(·) is true; and 0 otherwise.
The second step is to provide the upper bound for the first

term in r.h.s. of Eq. (5). Following the analysis in [9],

inf
α∈∆T

[
R̂S,ρ(gα) +

4

ρ

T∑
t=1

αtR̂S(Ht)

]

≤R̂S(h) +

T∑
t=1

min
(
4R̂S(Ht),

mt

m

)
+ min

I⊆T ,
|I|≥|T |−1/ρ

∑
t∈I

(mt

m
− 4R̂S(Ht)

) (6)

Hence, we complete the proof by combining (5) and (6),

R(h) ≤R̂S(h) +

T∑
t=1

min
(
4R̂S(Ht),

mt

m

)
+ C(m, ρ)

+ min
I⊆T ,

|I|≥|T |−1/ρ

∑
k∈I

(mt

m
− 4R̂S(Ht)

)
+

√
log(4/δ)

2m
,

where C(m, ρ) = 2
ρ

√
log T
m +

√
log T
ρ2m log

(
ρ2m
log T

)
; and T =

{k : mt/m > 4R̂S(Ht)}, the set of level t whose screening
ratio is greater than 4R̂S(Ht).

To simplify the presentation, we ignore the non-leading
terms and only keep the terms regarding cascade level T ,

instance number m and Rademacher complexity terms, and
obtain the simpler form as specified in Theorem 1.

Remark. The generalization error bound in Theorem 1 sheds
light on the cascade structure design. Note that the second term
is the minimization of screening ratio mt/m and complexity
term 4R̂S(Ht). Because most of the instances will be screened
in the first few levels, the screening ratio is large. Hence, one
should reduce the corresponding complexity term in these few
levels in order to make the generalization error bound tighter.
This is the theoretical basis in which we vary the model
complexity at a level in the cascade from low to high (by
increasing the ensemble size) as the level t increases.

IV. DISCUSSION

The high memory requirement and time cost of gcForest
can be tackled by exploiting distributed implementation [10]
or hardware facilitation. We believe, however, there is demand
to tackle them via algorithmic improvement.

The cascade procedure with confidence screening has some
connection with two lines of research. First, confidence screen-
ing is related to boosted cascade [11] which aims to reject
many negative instances and has achieved success in visual
object detection problems. Although the cascade structure
appears to be similar on the surface, the boosted cascade
procedure is not suitable for classification tasks because the
nature of the object detection tasks is different.

Second, there are some studies which add the output of
one classifier as an additional input for another classifier in
a series of multiple classifiers to improve the accuracy of a
single classifier [12], [13]. Like gcForest, these methods pass
all the instances through all the classifiers which is inefficient.

The subsampling strategy is related to sampling strategies
for bag-of-features image classification [14], [15]. By treating
an image as a collection of independent patches, random
sampling gives equal or better representative selection than
the sophisticated multiscale interest operators. In this paper,
we use a simple random sampling strategy and show that it
works in the context of deep forest. It is interesting to explore
other sampling strategies [16], [17].

In addition, using more features for the low-confidence
instances is related to the time-efficient feature extraction
approach [18]. For test instances, this approach only extracts
cheap and sufficient features, and when the classification
confidence is high enough, the test instance will be classified.
There are two main differences between this work and our
approach. First, their goal is to reduce test time cost, while
our goal is to reduce both train and test time cost of gcForest.
Second, features are given with known feature extraction time
costs in their setting, while the transformed features in deep
forest are unknown before multi-grained scanning.

Recently, Utkin and Ryabinin [19] modified gcForest and
proposed a Siamese deep forest as an alternative to the Siamese
neural networks to solve the metric learning tasks. Because our
target is to improve the efficiency of deep forest, our method
can help to improve the efficiency of Siamese deep forest and
other modified applications of gcForest as well.

V. EXPERIMENTS

The goal is to validate that gcForestcs can achieve predictive
accuracy comparable to or better than gcForest with much less
space and time cost.

Parameter Settings. In all experiments, both gcForest and
gcForestcs use the same cascade structure. Every level consists
of v random forests and v completely-random forests [5] in
the experiments, where v = 4 with multi-grained scanning and
v = 1 without. The class vector of each forest is generated by
three-fold cross validation.

For gcForest, every forest has 500 trees as recommended in
[3]. For gcForestcs, each forest at the first level has w trees
and the number of trees increases linearly as the number of
instances decreases at the subsequent levels. In the experiments
without multi-grained scanning, w = 20, 50, 100 to examine
their effects; and w = 100 in the experiments with multi-
grained scanning.

The number of cascade levels stops increasing when the
current level does not improve the accuracy of the previous
level for both gcForestcs and gcForest.

For gcForestcs, the prediction confidence threshold η at each
level is determined automatically according to Equation 4.
Hyper-parameter a is set according to a simple rule as follows.
If subsampling multi-grained scanning is used, a = 1/20.
Otherwise, a is set according to the training accuracy of the
first level ϵ1. If ϵ1 > 90%, a = 1/10; otherwise, a = 1/3.

In (subsampling) multi-grained scanning, gcForest uses
three window sizes with sizes of ⌊d/16⌋, ⌊d/8⌋, ⌊d/4⌋;
gcForestcs uses one window size with size ⌊d/16⌋ for d raw
features. Note that gcForestcs could adopt multiple window
sizes which might produce a better accuracy as suggested by
Zhou and Feng [3]. Nevertheless, it is sufficient to use only one
window size for gcForestcs to achieve a satisfactory accuracy.

Datasets. Experiments are performed on all the datasets
used by gcForest (except three small datasets which have
little to do with our purpose of improving the efficiency), i.e.,
LETTER, ADULT, IMDB, MNIST, sEMG, CIFAR-10.

Evaluation metrics. We adopt the predictive accuracy as
the classification performance measurement which is suitable
for these balanced datasets. Training time, test time and
memory usage are used to evaluate the efficiency.

Hardware. In the experiments without multi-grained scan-
ning, we use a machine with 4× 2.10 GHz CPUs and 32GB
main memory. In the experiments with multi-grained scanning,
we use a machine with 28×2.40 GHz CPUs and 756GB main
memory. This is because 32GB main memory is not enough
for the multi-grained scanning procedure of gcForest (although
gcForestcs has no barriers).

The experiments are divided into two categories: with and
without multi-grained scanning, described in the following two
subsections.

A. Results with Multi-Grained Scanning

The datasets sEMG, MNIST and CIFAR10 are used here
because they hold spatial or sequential relationships among
the raw features; and the other datasets do not.

TABLE I: Comparison results (with multi-grained scanning) between
gcForestcs and gcForest on accuracy, training time, test time (in CPU
seconds) and memory usage (in megabytes), with given test sets.

Datasets Method Accuracy Training time Test time Memory

sEMG gcForestcs 72.59 1547.62 77.48 4348
gcForest 71.30 34323.78 2288.29 41789

MNIST gcForestcs 99.26 1060.65 9.64 4997
gcForest 99.26 27840.39 464.27 50518

CIFAR10 gcForestcs 62.62 13341.68 667.08 6875
gcForest 61.78 63068.32 2102.71 73826

TABLE II: Comparison results (without multi-grained scanning)
between gcForestcs and gcForest on accuracy (%), training time, test
time (in CPU seconds) and memory usage (in megabytes). 10 test
runs were conducted and the average accuracies are presented.

Datasets Method Accuracy Training time Test time Memory

LETTER

gcForestcs(20) 96.42 13.39 0.41 206
gcForestcs(50) 96.93 17.16 1.25 472
gcForestcs(100) 97.08 75.23 2.23 915
gcForest 97.08 86.42 3.17 4526

ADULT

gcForestcs(20) 86.04 27.47 2.18 173
gcForestcs(50) 86.04 45.19 4.12 351
gcForestcs(100) 86.11 95.48 6.86 648
gcForest 86.06 198.85 12.24 3002

IMDB

gcForestcs(20) 89.19 590.79 16.63 1518
gcForestcs(50) 89.40 974.07 23.19 1802
gcForestcs(100) 89.57 1623.11 32.05 1992
gcForest 89.20 11633.65 152.20 3750

Table I shows that gcForestcs achieves comparable or even
better predictive accuracy than gcForest with about an order of
magnitude less memory and faster runtime. The only exception
is the CIFAR-10 dataset, where the training and testing times
are still 4 and 3 times faster, respectively.

Interestingly, if gcForest adopts subsampling multi-grained
scanning at each level (the same as gcForestcs) instead of
multi-grained scanning, its predictive accuracy will degrade
heavily, e.g., it achieves 67.78% on sEMG which is much
lower than the original gcForest and gcForestcs. Thus we
report the results of the original gcForest only. This outcome
further verifies the effectiveness of confidence screening.

B. Results without Multi-Grained Scanning

Here we conduct experiments without multi-grained scan-
ning on the datasets that do not hold spatial or sequential
relationships among the raw features. gcForestcs uses different
numbers of trees of each forest at the first level, i.e., 20, 50
and 100 to examine their rates of improvements.

As shown in Table II, gcForestcs improves its accuracy as
window size increases; but the maximal gap among them is
less than 0.7%. In contrast, gcForest has a large accuracy gap,
e.g., gcForest(20) achieves 88.21% on IMDB which is much
lower than 89.20% achieved by gcForest(500). Because the
accuracy of gcForest with fewer trees is not competitive, we
report its accuracy in which each forest has 500 trees only.

Table II shows that gcForestcs(100) achieves accuracies
comparable to or better than gcForest on all three datasets.

1 2 3 4 5 6 7 8
Level

9250
9500
9750

10000
10250
10500
10750

in

st
an

ce
s

 Screened instances
 Correctly classified
 screened instances

(a) Screened instances

1 2 3 4 5 6 7 8
Level

3000

3500

4000

4500

5000

5500

in

st
an

ce
s

 Remaining instances
 Correctly classified remaining
 instances at the current level
 Correctly classified remaining
 instances at the next level

(b) Remaining instances

Fig. 4: IMDB: Screened instances and remaining instances at each
level of gcForestcs. (a) The accumulated numbers of screened in-
stances and correctly classified screened instances up to a certain level
of gcForestcs; (b) The number of remaining instances at each level
of gcForestcs. At each level, the remaining instances are passed to
the next level. The number of correctly classified remaining instances
increases from the current level to the next level.

VI. INFLUENCE OF CONFIDENCE SCREENING

In this section, we aim to study the influence of confidence
screening that links the decreasing number of instances with
the improvement at each level in terms of accuracy, memory
and runtime. The examples are based on IMDB, and the results
are similar on other datasets.

As shown in Figure 4(a), gcForestcs screens 64% of the test
instances of IMDB at the first level. At the last level, only 28%
test instances are passed through all the levels. In contrast, all
the test instances are passed through all the levels in gcForest.
The results are similar on training. This leads directly to the
high reduction in memory and runtime.

We further demonstrate how confidence screening influ-
ences the classification result. As Figure 4(a) shows, the
accumulated number of screened instances increases as the
number of levels increases. Because instances are screened
if their predictions have high confidence, the accuracy of the
screened instances is about 95% which is much higher than
the overall accuracy (< 90%). Interestingly, gcForestcs and
gcForest have the same predictions on the screened instances
except two of them.

The result of the remaining instances is shown in Fig-
ure 4(b): the blue line plots the number of remaining instances
which are correctly classified at the current level; and the
orange line represents the number of those correctly classified
at the next level. Figure 4(b) shows that the accuracy of
remaining instances increases when they are passed from the
current level to the next level—due to the model used in the
next level. At the final level, the number of correctly clas-
sified instances of gcForestcs is 80 instances more than that
of gcForest. This outcome shows that confidence screening
encourages models at each level to better focus on the hard-to-
predict instances that leads directly to their better predictions.

VII. CONCLUSIONS

We propose a more efficient Deep Forest approach called
gcForestcs which has significantly smaller memory require-
ment and runs faster than gcForest [3]. We first identify
two deficiencies of gcForest and then introduce a confidence
screening mechanism to address these issues. The confidence

screening splits the instances into easy-to-predict and hard-
to-predict subsets at each level of cascade, which reduces the
number of instances passed to the next level. This significantly
reduces the training and testing times of forests at each level.
Our theoretical analysis suggests to vary the model complexity
from low to high as the level increases in the cascade. This
design further reduces memory requirement and time cost at
the first few levels; the model complexity increases as the level
increases to cope with hard-to-predict instances.

The effectiveness of the approach is validated in our eval-
uation that it achieves more with less, i.e., gcForestcs has
predictive accuracy comparable to or better than gcForest, with
up to one order of magnitude smaller time and memory costs.

Acknowledgment: This research was supported by NSFC
(61751306) and the 111 Program (B14020).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[3] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep
neural networks,” in IJCAI, 2017, pp. 3553–3559.

[4] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[5] F. T. Liu, K. M. Ting, Y. Yu, and Z.-H. Zhou, “Spectrum of variable-
random trees,” Journal of Artificial Intelligence Research, vol. 32, pp.
355–384, 2008.

[6] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton, FL: CRC, 2012.

[7] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep
neural networks,” CoRR, vol. abs/1702.08835, 2017.

[8] C. Cortes, M. Mohri, and U. Syed, “Deep boosting,” in ICML, 2014,
pp. 1179–1187.

[9] G. DeSalvo, M. Mohri, and U. Syed, “Learning with deep cascades,” in
ALT, 2015, pp. 254–269.

[10] Y.-L. Zhang, J. Zhou, W. Zheng, J. Feng, L. Li, Z. Liu, M. Li,
Z. Zhang, C. Chen, X. Li, and Z.-H. Zhou, “Distributed deep forest
and its application to automatic detection of cash-out fraud,” CoRR,
vol. abs/1805.04234, 2018.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001, pp. 511–518.

[12] J. Gama and P. Brazdil, “Cascade generalization,” Machine Learning,
vol. 41, no. 3, pp. 315–343, 2000.

[13] H. Zhao and S. Ram, “Constrained cascade generalization of decision
trees,” IEEE Transactions on Knowledge and Data Engineering, vol. 16,
no. 6, pp. 727–739, 2004.

[14] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-
features image classification,” in ECCV, 2006, pp. 490–503.

[15] F. Shi, E. Petriu, and R. Laganiere, “Sampling strategies for real-time
action recognition,” in CVPR, 2013, pp. 2595–2602.

[16] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in ICML, 2009, pp.
1113–1120.

[17] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, “The big data
bootstrap,” in ICML, 2012.

[18] L.-P. Liu, Y. Yu, Y. Jiang, and Z.-H. Zhou, “TEFE: a time-efficient
approach to feature extraction,” in ICDM, 2008, pp. 423–432.

[19] L. V. Utkin and M. A. Ryabinin, “A siamese deep forest,” Knowledge-
Based Systems, vol. 139, pp. 13–22, 2018.

