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Random forests have been one of the successful ensemble algorithms in machine learning, 
and the basic idea is to construct a large number of random trees individually and 
make predictions based on an average of their predictions. The great successes have 
attracted much attention on theoretical understandings of random forests, mostly focusing 
on regression problems. This work takes one step towards the convergence rates of random 
forests for classification. We present the first finite-sample rate O (n−1/(8d+2)) on the 
convergence of purely random forests for binary classification, which can be improved to be 
of O (n−1/(3.87d+2)) by considering the midpoint splitting mechanism. We introduce another 
variant of random forests, which follows Breiman’s original random forests but with 
different mechanisms on splitting dimensions and positions. We present the convergence 
rate O (n−1/(d+2)(lnn)1/(d+2)) for the variant of random forests, which reaches the minimax 
rate, except for a factor (ln n)1/(d+2) , of the optimal plug-in classifier under the L-Lipschitz 
assumption. We achieve the tighter convergence rate O (

√
ln n/n) under some assumptions 

over structural data. This work also takes one step towards the convergence rate of random 
forests for multi-class learning, and presents the same convergence rates of random forests 
for multi-class learning as that of binary classification, yet with different constants. We 
finally provide empirical studies to support the theoretical analysis.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

From the pioneer work [12], random forests have been regarded as one of the successful ensemble algorithms in machine 
learning, which construct a large number of random trees individually and then make predictions based on an average of 
their predictions. This idea is partly motivated from geometric feature selection [2], random subspace [33], random split 
selection [23], as well as earlier ensemble decision trees [38]. Random forests have achieved good performance empirically 
[10,12,25,56], and have been involved in diverse applications such as ecology [18], computational biology [48], computer 
vision [16], objection recognition [55], remote sensing [7], and so on. Numerous variants have been developed to improve 
performance and reduce computational costs [4,6,19,30,39,40,44,51,60,66]. For an overview of random forests, we refer 
readers to the works of [10,17,28].

Empirical successes have attracted much attention on theoretical explorations of random forests. Breiman [12] presented 
the generalization bounds for random forests based on the correlation and strength of individual random trees, followed by 
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consistency analysis of a simple model of random forests [13]. Lin and Jeon [41] established a connection between random 
forests and adaptive nearest neighbors, and Meinshausen [43] studied consistency of random forests for regression in the 
context of conditional quantile predictions. The consistency results place random forests in a favored category of ensemble 
algorithms [8,9,46,52,53,59]. Denil et al. [20] narrowed the gap between theory and practice of random forests for regression, 
and Goetz et al. [31] proposed an active learning algorithm for non-parametric regression using random forests. Li et al. [40]
derived non-asymptotic bounds on the expected bias of MDI importance for random forests, along with variable importance 
[35,42]. Tang et al. [58] discussed when random forests fail and examined the influences of parameters over performance. 
Most previous studies focus on the theoretical understandings of random forests for regression problems.

For classification, Biau et al. [9] took a crucial milestone on the consistency of randomized ensemble classifiers, and Denil 
et al. [19] showed the first consistency of online random forests. For a full understanding, however, it is necessary to take 
one further step towards the convergence rates of random forests for classification, which would be beneficial to design 
better random forests, and comprehend the effects of different splitting mechanisms during the constructions of random 
forests for classification.

This work takes one step towards convergence rates of random forests for classification, and the main contributions can 
be summarized as follows:

• We present the first finite-sample rate on the convergence of purely random forests, which were proposed originally 
by Breiman [11]. Specifically, a convergence rate O (n−1/(8d+2)) is derived for binary classification by selecting leaves 
number k = O (n4d/(4d+1)), where n and d denote the size of training data and dimension, respectively. This rate can be 
further improved to be of O (n−1/(3.87d+2)) if we instead split a leaf along the dimension at the midpoint of the chosen 
side. As a by-product, we present the convergence rates between random forests and individual random trees, and make 
a better estimate on the height of random trees than was previously known.

• We introduce another simplified variant of random forests, which follows Breiman’s original random forests [12] but 
with different mechanisms on splitting dimensions and positions. We derive a convergence rate O (n−1/(d+2)(ln n)1/(d+2))

for the simplified random forests, which reaches the minimax rate, except for a factor (ln n)1/(d+2) , of the optimal plug-
in classifiers under the L-Lipschitz assumption. We finally achieve the tighter convergence rate O (

√
ln n/n) under some 

assumptions over structural data, which sheds insights on random forests by correlating randomization process with 
data-dependent tree structure.

• We further study the convergence analysis of random forests for multi-class learning, and achieve the same convergence 
rates of random forests for multi-class learning as that of binary classification, yet with different constants. To our 
knowledge, this presents the first convergence analysis for multi-class learning under only the L-Lipschitz assumption, 
and the proofs are rather technical. Relevant results may present independent interests on the convergence analysis of 
other multi-class algorithms and problems.

• We finally provide empirical studies to support our theoretical analysis.

1.1. Related work

A large number of variants of random forests have been developed for different problems and settings during the past 
decades. Geurts et al. [30] introduced the extremely randomized trees and Amaratunga et al. [1] provided the enriched random 
forests for DNA microarray data of huge features. Menze et al. [44] presented the oblique random forests for multivariate trees 
by explicitly learning the optimal split directions with linear discriminative models. Clémençon et al. [14] introduced the 
ranking forests based on aggregation and feature randomization principles for bipartite ranking. Athey et al. [4] developed 
a flexible and computationally efficient algorithm for the generalized random forests. A general framework is presented 
in [63] on various splitting criteria for random forests based on loss functions. Zhou and Feng [65,66] proposed gcForest
with performance highly competitive to deep neural networks. Online random forests have also been developed with strong 
theoretical guarantees [19,39,46,57].

For regression, much attention has been paid on the L2
2-consistency of random forests with relevant variants [3,8,20,

27,43,53]. In particular, Scornet et al. [53] proved the first L2
2-consistency of Breiman’s original random forests based on 

some assumptions such as additive regression functions and uniform distribution over instance space X . The crucial analysis 
technique is the classical decomposition of variance and bias for random forests regression, whereas it is difficult to make 
such decomposition for random forests in classification. Moreover, the stopping-splitting criteria are different for random 
forests classification and regression, as shown in Algorithm 1 and work [53], respectively. We do not directly compare the 
convergence rates of random forests for regression and classification due to different settings and performance measures.

For classification, Biau et al. [9] made a crucial milestone on the consistency of some randomized ensemble classifiers 
such as purely random forests. The key technical tool is the general consistency theorem for partition classifiers [22, Theo-
rem 6.1], that is, partition classifiers are consistent if the followings hold in probability (written with our notations),

ν(C(x)) → 0 and |C(x) ∩ Sn| → +∞ as n → +∞ ,

where ν(C(x)) denotes the diameter of the leaf or rectangular cell C(x). Based on this result, some variants of random 
forests classifiers have been proven to be consistent such as online random forests [19] and Mondrian forests [46]. Our 
work presents the convergence rates of random forests for classification based on different analysis techniques.
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Mourtada et al. [46] presented the consistency of online Mondrian forests classifiers from [22, Theorem 6.1], and derived 
the minimax rate O (n−1/(d+2)) for plug-in classifiers based on the estimation of conditional probability, that is, they took an 
average of conditional probabilities calculated by individual Mondrian trees. This is different from random forests classifier, 
which takes a majority over the predictions made by individual random trees. Wang et al. [61,62] proposed the novel 
Bernoulli random forests with theoretical consistency and empirical supports.

The rest of this work is organized as follows: Section 2 shows the convergence rates between random forests and indi-
vidual random trees. Section 3 presents the convergence rates of purely random forests with its variants. Section 4 provides 
the convergence rates of the simplified variant of Breiman’s random forests. Section 5 gives the convergence rates of random 
forests for multi-class learning. Section 6 presents the detailed proofs of our theoretical results. Section 7 conducts empirical 
studies. Section 8 concludes with future work.

2. Convergence rates between random forests and random trees

We begin with some notations used in this work. Let B(p) be a Bernoulli distribution with parameter p ∈ [0, 1], and 
U(a, b) represents a uniform distribution over the interval [a, b]. We denote by M(p1, p2, · · · , pn) the multinomial distribu-
tion with parameters p1, p2, · · · , pn ∈ [0, 1] and p1 + p2 +· · ·+ pn = 1. For positive f (n) and g(n), we write f (n) = O (g(n))

if there exist two constants c, n0 ∈ (0, +∞) such that f (n) ≤ cg(n) for n ≥ n0. For integer n > 0 and real r, we introduce
[n] := {1, 2, · · · , n} and let 	r
 denote the largest integer which is no more than r. Denote by Euler’s constant e = 2.718 · · · .

Let X ⊆ [0, 1]d and Y = [τ ] denote the instance and label space, respectively, and this work focuses on binary classifi-
cation (τ = 2) and multi-class learning (τ > 2). Suppose that D is an underlying (unknown) distribution over the product 
space X ×Y , and let DX be its marginal distribution over instance space X . Denote by

η j(x) = Pr[y = j|x] for j ∈ [τ ]
the conditional probability of y = j over instance x w.r.t. distribution D, and 

∑τ
j=1 η j(x) = 1.

Given a hypothesis h : X → Y , we define the classification error over distribution D as

RD(h) = Pr
(x,y)∼D

[h(x) = y] = E(x,y)∼D[I[h(x) = y]] = Ex∼DX

⎡
⎣ τ∑

j=1

η j(x)I[h(x) = j]
⎤
⎦ .

Here, I[·] denotes the indicator function, which returns 1 if the argument is true and 0 otherwise. Hence, the optimal Bayes’ 
error (the minimum of classification error) and the optimal Bayes’ classifier can be given, respectively, by

R∗
D = Ex

[
min
j∈[τ ]

{1 − η j(x)}
]

and h∗
D(x) = arg max

j∈[τ ]
{η j(x)} ,

where ties are broken arbitrarily.
Notice that distribution D is unknown in practice, and what we observe is a training data

Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)} ,

where each example is drawn independently and identically (i.i.d.) from distribution D. Our goal is to learn a classifier ĥn
from the training data Sn of smaller classification error. As the training data size n increases, we could obtain a sequence of 
classifiers ĥ1, ̂h2, · · · , ̂hn, · · · . A sequence of classifiers {ĥn}∞n=1 is said to be consistent if E Sn [RD(ĥn)] → R∗

D as n → ∞.
Random forests classifier fm(x) takes a majority vote over m individual randomized trees f Sn,�1(x), f Sn,�2(x), . . . ,

f Sn,�m (x), that is,

fm(x) = arg max
j∈[τ ]

{
m∑

i=1

I
[

f Sn,�i (x) = j
]}

, (1)

where ties are broken arbitrarily. The random vectors �1, �2, . . . , �m are distributed identically and independently, and 
characterize the mechanisms of random selections of splitting leaves, dimensions, and positions during the construction 
of randomized trees. The random vectors �1, �2, . . . , �m will be specified according to different random forests in the 
subsequent sections.

We first present the following relationship of convergence rate between random forests classifier and individual random 
tree classifier, and the detailed proof is presented in Section 6.1.

Lemma 1. Let fm(x) be the random forests classifier given by Eqn. (1), and f Sn,�(x) denotes a classifier of individual tree with respect 
to random vector �. We have

E�1,...,�m [RD( fm(x))] − R∗
D ≤ τ (E�[RD( f Sn,�(x))] − R∗

D) ,

where τ is the number of labels in classification.
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This lemma shows that the convergence rate of a random forests classifier fm(x) is no more than τ -times that of 
individual random tree classifier f Sn,�(x), and the convergence rate of random forests is obtained from the expectation of 
convergence rates of individual trees, which can be viewed as an average of convergence rate of all individual random trees.

Lemma 1 recovers the convergence rate for binary classification [26, Lemma 1] when τ = 2. If E�[RD( f Sn,�(x))] → R∗
D , 

then we have E�1,...,�m [RD( fm(x))] → R∗
D; therefore, the consistency of random forests follows from the consistency of 

individual random tree. Such result also recovers the consistency results for binary classification [9, Proposition 1] and for 
multi-class learning [19, Proposition 1], and what’s more, our lemma could present its convergence rate.

Notice that Lemma 1 is almost tight without additional assumptions, which can be shown by the following example:

Example 1. We consider binary classification with label space Y = {0, 1}. For η ∈ (0, 1/4) and δ ∈ (0, 1/2), we suppose 
η1(x) = Pr[y = 1|x] = 1/2 +η and Pr�

[
f Sn,�(x) = 1|x]= 1/2 −δ for every x ∈D. We have E�

[
RD

(
f Sn,�

)]− R∗
D = η(1 −2δ)

and it also holds that

E�1,...,�m [RD ( fm)] − R∗
D = 2ηEx∼DX

[
Pr

�1,...,�m
[ fm(x) = 0]

]

= 2ηEx∼DX

[
Pr

�1,...,�m

[
1

m

m∑
i=1

I
[

f Sn,� j (x) = 0
]≥ 1

2

]]
≥ 2η(1 − exp(−2mδ2)) ,

where the last inequality holds from the Chernoff bounds [34]. By setting δ = 1/m1/4, we have

E�1,...,�m [RD ( fm)] − R∗
D = 2η = τ (E�

[
RD

(
f Sn,�

)]− R∗
D) as m → +∞ .

3. Convergence rates of the purely random forests for binary classification

This section focuses on binary classification with label space Y = {1, 0}. Let η1(x) be the conditional probability of y = 1
w.r.t. distribution D, and it follows that Pr[y = 0|x] = 1 −η1(x). We assume that η1(x) is L-Lipschitz for some constant L > 0, 
that is, |η1(x) − η1(x′)| ≤ L‖x − x′‖ for every x, x′ ∈ X . This assumption has been taken in random forests for regression 
[8,46] and binary classification [15,54], and an intuitive explanation on such assumption is that two instances are likely to 
have similar labels for smaller distance.

We begin with the purely random forests, which were originally proposed by Breiman [11]. Genuer [27] studied the 
variance reductions of purely random forests for regression, while Arlot and Genuer [3] presented its bias-variance analysis. 
For classification, Biau et al. [9] made an important milestone on the consistency of purely random forests. This section 
takes one further step on the convergence rate of purely random forests for binary classification.

Formally, a purely random tree can be constructed as follows. Each node is associated with a rectangular cell, and all 
leaves (external nodes) constitute a partition of [0, 1]d at each iteration of tree construction. The root of random partition 
is [0, 1]d itself. The following procedure is repeated k − 1 iterations for some pre-defined parameter k ≥ 2 in advance, and 
hence the output random tree has k leaves.

• A split leaf is selected at random, uniformly over all leaves at the current iteration.
• Once the leaf is selected, a split dimension is selected at random, uniformly over [d].
• The leaf is split along the split dimension at random, uniformly over the chosen side.

A purely random tree classifier f Sn,�(x) takes a majority vote over labels yi , whose corresponding instances xi belong to the 
same cell of random partition as instance x. The main difference, between the purely random tree and Breiman’s original 
random tree [12], is that recursive cell splits are irrelevant to label information, and the growth of individual random tree 
is independent of training sample. Given m individual purely random trees f Sn,�1 (x), f Sn,�2(x), . . . , f Sn,�m (x), the random 
forests classifier takes a majority vote over those random trees, that is, the voting classifier fm(x) = I[∑m

i=1 f Sn,�i (x) ≥ m/2].
We now go into the details of randomness � on the construction of purely random forests. Given a purely random tree, 

we associate k leaves with k disjoint rectangular cells C1, C2, . . . , Ck , constituting a partition of instance space X = [0, 1]d . 
Let C(x) denote the rectangular cell of random tree, that contains the instance x.

Given an instance x ∈ X , we introduce k − 1 Bernoulli random variables X1, X2, · · · , Xk−1 to characterize the random 
events that the node, containing instance x, was selected for splitting in the construction of random tree. Specially, the 
event Xi = 1 implies that the node containing x is selected for splitting in the i-th iteration of random tree construction; 
otherwise, Xi = 0. It follows that Xi ∼ B(1/i), since there are i leaves for selection with identical probability during the i-th 
iteration of random tree construction.

Let h(C(x)) denote the height of the rectangular cell C(x), i.e., the splitting times of C(x) during the construction of 
random tree. It is easy to obtain

h(C(x)) =
k−1∑

Xi .
i=1

4
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We present upper and lower bounds on h(C(x)) in expectation and in probability as follows:

Lemma 2. Let X1, X2, . . . , Xk−1 be k − 1 random variables such that Xi ∼ B(1/i) for i ∈ [k − 1]. Given an instance x ∈X , we have

ln(k) ≤ E X1,X2,...,Xk−1 [h(C(x))] ≤ 1 + ln(k − 1) .

For any ε ∈ (0, 1), we also have

PrX1,X2,...,Xk−1 [h(C(x)) ≤ (1 − ε) ln k] ≤ k−ε2/2 ,

PrX1,X2,...,Xk−1 [h(C(x)) ≥ (1 + ε)(1 + ln(k − 1))] ≤ k−ε2/2 .

We have h(C(x)) = O (log k) with high probability, especially for large k. Lemma 2 improves the previous work [9] on the 
bounds of h(C(x)), where the saturation level is considered in random binary search tree [21,49], and their bounds can be 
rewritten (with our notation) as follows:

Pr[h(C(x)) < (c∗ − ε) ln k] ≤ O (log(k)k(c∗−ε) ln(2e/(c∗−ε))−1) .

Here, c∗ = 0.3733 . . . is the unique solution of c ln(2e/c) = 1 (c < 1) and ε < c∗ . As can be seen, Lemma 2 makes better 
estimations of h(C(x)) with larger probability. The detailed proof of Lemma 2 is presented in Section 6.2.

Given cell C(x), we define its diameter as ν(C(x)) = maxx,x′∈C(x){‖x − x′‖}, and bound ν(C(x)) in probability as follows:

Lemma 3. For integer k ≥ 2, real ε > −1 and instance x ∈X , we have

Pr

[
ν[C(x)] ≥ (1 + ε)

√
d

k1/8d

]
≤ ed

(1 + ε)k1/8d
,

where the probability takes over the random selections of splitting leaves, dimensions and positions.

This lemma shows that, for every instance x ∈ X , the diameter of rectangle cell of C(x) can be upper bounded by 
(1 + ε)

√
d/k1/8d with probability at least 1 − ed/(1 + ε)k1/8d . We also have ν(C(x)) → 0 in probability as k → +∞. For 

simplicity, we do not formalize the random selections of splitting leaves, dimensions and positions in Lemma 3, while the 
detailed formalization and proof are presented in Section 6.3.

Recall that there are k disjoint rectangular cells C1, C2, . . . , Ck during the construction of purely random tree with k − 1
iterations. We could bound the classification error over each rectangular cell, and the detailed proof is given in Section 6.4.

Lemma 4. Let C1, C2, . . . , Ck be the k disjoint rectangular cells associating with the leaves of randomized tree, and f�,Sn(x) denotes 
the classifier generated by random tree. For L-Lipschitz conditional probability η1(x) and for every i ∈ [k], we have

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]
Pr[x ∈ Ci]

≤ 2Lν(Ci)Pr[x ∈ Ci] + Ex[min{η1(x),1 − η1(x)}|x ∈ Ci]Pr[x ∈ Ci] +√
Pr[x ∈ Ci]/n + 3/n .

Based on Lemmas 2-4, we could present the convergence rates of purely random forests for binary classification, and the 
detailed proof is presented in Section 6.5.

Theorem 1. Let fm(x) be the random forests classifier by applying purely random tree to training data Sn of k leaves (k ≥ 2). Under 
the L-Lipschitz assumption over conditional probability η1(x), we have

R∗
D ≤ E Sn,�1,...,�m [RD( fm)] ≤ R∗

D + 4
√

2eLd3/2

k1/8d
+ 2

√
k

n
+ 6k

n
.

From this theorem, we obtain a convergence rate O (n−1/(8d+2)) of purely random forests for binary classification, by 
selecting leaves number k = O (n4d/(4d+1)). To the best of our knowledge, this presents the first finite-sample converge rate 
of purely random forests for binary classification. Also, it is easy to observe that

E Sn,�1,...,�m [RD( fm)] → R∗
D as k → +∞ and k/n → 0,

which recovers the consistency result of random forests for classification [9, Theorem 2].
We further study the effects of different splitting mechanisms during the construction of random forests. For example, 

how about the convergence rates for different selections of splitting leaves, dimensions and positions? Here, we consider 
5



W. Gao, F. Xu and Z.-H. Zhou Artificial Intelligence 313 (2022) 103788
Algorithm 1 A simplified variant of Breiman’s original random tree [12].
Input: Training sample Sn and leaves number k.
Output: A random tree
Initialize: Set P = {[0, 1]d} and nleaf = 1.

1: while nleaf < k and P is not empty do
2: Let C be the first rectangle cell in P , and remove it from P .
3: if All training examples in C have the same label (including less than one example) then
4: Do nothing and the cell C will not be split any more.
5: else
6: Select a dimension Y at random, uniformly over dimensions along which the side length is maximal in the cell C .
7: Split cell C along Y at the midpoint of the chosen side, called CL, C R two resulting cells.
8: Update P by appending CL and C R , and nleaf ← nleaf + 1.
9: end if

10: end while

purely random forests with midpoint splits, where midpoint splits have been well-studied for random forests in regression 
[3,8,36]. Formally, a purely random tree with midpoint splits can be constructed as follows. The root of random partition is 
[0, 1]d itself. The following procedure is repeated k − 1 iterations for some pre-defined parameter k ≥ 2 in advance.

• A split leaf is selected at random, uniformly over all leaves at the current iteration.
• Once the leaf is selected, a split dimension is selected at random, uniformly over [d].
• The leaf is split along the split dimension at the midpoint of the chosen side.

Given individual random tree classifiers f Sn,�1(x), f Sn,�2 (x), . . . , f Sn,�m (x), the random forests classifier takes a majority 
vote over m random trees. We present a convergence rate of purely random forests with midpoint splits for binary classifi-
cation as follows:

Theorem 2. Let fm(x) be the random forests classifier by applying purely random tree with midpoint splits to training data Sn of k
leaves (k ≥ 2). Under the L-Lipschitz assumption over conditional probability η1(x), we have

R∗
D ≤ E Sn,�1,...,�m [RD( fm)] ≤ R∗

D + 8L3/5d7/10

k1/3.87d
+ 2

√
k

n
+ 6k

n
.

Based on this theorem, we get a convergence rate O (n−1/(3.87d+2)) of purely random forests with midpoint splits for 
binary classification, by selecting leaves number k = O (n3.87d/(3.87d+2)). As can be seen, we achieve a better convergence 
rate by considering the midpoint splitting mechanism during the construction of purely random forests, and an intuitive 
explanation is that midpoint splits yield smaller rectangle cells. The detailed proof of Theorem 2 is presented in Section 6.6.

4. Convergence rates of the simplified random forests for binary classification

This section also focuses on binary classification and presents the convergence analysis towards Breiman’s original ran-
dom forests [12]. We follow the procedures of Breiman’s random forests, but with different mechanisms on the selections 
of splitting dimensions and positions due to technical analysis challenges. Algorithm 1 presents a detailed description of the 
simplified variant of Breiman’s random forests.

We introduce a structural list P to store leaves for further splitting, which aims to keep the leaves split in successive 
layers. Such mechanism is essentially the same as that of random forests for regression [53]. At each iteration, the first leaf 
is selected and removed from P , and it will not be split if all training examples have the same label in the leaf (including 
less than one example in the leaf). For a split leaf, we select a dimension at random, uniformly over dimensions along which 
the side length is maximal in the leaf, and then split the leaf along the dimension at the midpoint of the chosen side. We 
finally update list P by appending two resulting leaves.

A leaf (rectangle cell) will not be split in Algorithm 1 if all training examples have the same label in this leaf. Such 
stopping-splitting criterion is different from purely random forests [11] and Mondrian forests [39,46], where the growth of 
individual random tree is independent of training sample. In addition, it is also different from random forests regression 
[53], where a leaf will not be split only when the leaf has exactly one training example.

Let f Sn,�1 (x), f Sn,�2(x), . . . , f Sn,�m (x) denote m individual random tree classifiers according to Algorithm 1. Then, ran-
dom forests classifier takes a majority vote over m random trees, that is, fm(x) = I[∑m

i=1 f Sn,�i (x) ≥ m/2]. We present a 
convergence rate of the simplified variant of random forests for binary classification as follows:

Theorem 3. Let fm(x) be the random forests classifier by applying Algorithm 1 to training data Sn of k leaves (k ≥ 2 and n ≥ 4). Under 
the L-Lipschitz assumption over conditional probability η1(x), we have

R∗
D ≤ E Sn,�1,...,�m [RD( fm)] ≤ R∗

D + 4

√
k ln n

n
+ 2

4

√
4k3 ln n

n3
+ 12k

n
+ 4

√
k

n
+ 32L

√
d

1/d
.

k

6
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We get a convergence rate O (n−1/(d+2)(ln n)1/(d+2)) for random forests based on Algorithm 1, by selecting leaves number 
k = O ((n/ ln n)2d/(d+2)). This presents a significantly better convergence rate than that of purely random forests due to 
different splitting mechanisms and stopping-splitting criteria. The detailed proof of Theorem 3 is given in Section 6.7.

Under the L-Lipschitz assumption, it is well-known [5,64] that the minimax rate is of O (n−1/(d+2)) for the optimal 
plug-in classifiers f (x) = I[η̂1(x) ≥ 1/2], where η̂1(x) is the estimated conditional probability. Hence, our simplified variant 
of random forests reaches the minimax convergence rate, except for a factor (ln n)1/(1+d) , as that of the optimal plug-in 
classifiers, despite random forests are not plug-in classifiers. This is because random forests take a majority vote over the 
predictions of individual random trees, rather than the estimation of conditional probability.

Essentially, the stopping criteria in Algorithm 1 can be viewed as a pre-pruning of decision trees, which stops the tree-
building process early when all samples have the same label in a cell, and avoids producing leaves with smaller samples. 
Such mechanism has been well-known as a regularization to prevent overfitting for decision trees, while our work further 
shows a better convergence rate for random forests. This is because we could reduce the splittings of leaves and make use 
of exponential inequality for the convergence analysis of random forests when all samples have the same label. In addition, 
the stopping criterion makes our Algorithm 1 different from ordinary histograms, where our algorithm could dynamically 
adjust the partition according to training data, while more partitions as in ordinary histograms may lead to overfitting or 
inconsistency for random forests.

Breiman’s original random forests [12] took some splitting criteria, such as information gain and entropy, to select the 
best-split dimension and position, which correlates the randomization process with data-dependent tree structure. This is 
the main difference from our simplified variant of random forests in Algorithm 1. Intuitively, such correlation could yield 
tighter convergence rates of random forests for classification, whereas it remains a big challenge to present theoretical 
analysis from a technical view. One possible solution is to introduce two samples for splitting and predicting of random 
forests, respectively; for example, Wager and Athey [59] introduced the honesty and regularity assumptions based on two 
samples to analyze random forest regression. This also remains some technical difficulties on how to merge two samples 
into one sample for Breiman’s original random forests based on majority voting in classification; therefore, it is still a long 
way to theoretically understanding the mechanism of Breiman’s original random forests.

We now make some assumptions over structural data, which could yield tighter convergence rate for the simplified 
variant of random forests. Suppose that there is a constant k0 ≥ 2, such that the output random trees from Algorithm 1
have at most k0 leaves with all training examples in each leaf having the same label. Based on such assumption, we present 
a convergence rate of the simplified variant of random forests for binary classification as follows.

Theorem 4. Suppose that there is a constant k0 ≥ 2, such that the output random trees from Algorithm 1 have at most k0 leaves with 
all training examples having the same label in each leaf. Let fm(x) be the random forests classifier by applying Algorithm 1 to training 
data Sn. We have

E Sn,�1,...,�m [RD( fm)] ≤ 4

√
k0 ln n

n
+ 2

4

√
4k3

0 ln n

n3
+ 2

√
k0

n ln n
+ 6k0

n
.

From this theorem, we could achieve the tighter convergence rate O (
√

ln n/n) of the simplified variant of random forests 
for classification, which is independent of dimension d. The main improvements are owing to the data assumption and 
stopping criteria in Algorithm 1 from a technical view, where we could make use of exponential inequality for all cells to 
derive the tighter convergence rate when all samples have the same label for each cell.

Theorem 4 sheds lights on Breiman’s original random forests [12] of tighter convergence rates via correlating randomiza-
tion process and data-dependent tree structure. The assumption in Theorem 4 is relevant to algorithm, while it still holds 
for some irrelevant cases; for example, Algorithm 1 satisfies such assumption when the data is separable and the separable 
hyperplane is parallel to axis. The detailed proof of Theorem 4 is presented in Section 6.8.

5. Convergence rates of random forests for multi-class learning

This section focuses on multi-class learning with label space Y = [τ ] for τ ≥ 3. Recall that η j(x) denotes the conditional 
probability of y = j over instance x w.r.t. distribution D for j ∈ [τ ], and it holds that η1(x) + η2(x) + · · · + ητ (x) = 1. We 
also make L-Lipschitz assumption for multi-class learning, that is, for every x, x′ ∈X , there exists a constant L > 0 such that

|η j(x) − η j(x′)| ≤ L‖x − x′‖ for every j ∈ [τ ] .

Such assumption has been studied for multi-class learning [24,32,37,47], which can be viewed as a direct extension of 
Lipschitz assumption of binary classification to multi-class learning. To our knowledge, it still remains an open problem on 
the convergence rate of multi-class algorithms under only the L-Lipschitz assumption.

Given m individual purely random trees f Sn,�1(x), f Sn,�2(x), . . . , f Sn,�m (x), the random forests classifier takes a majority 
vote over those random trees for multi-class learning, that is,
7
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fm(x) = arg max
j∈[τ ]

{
m∑

i=1

I
[

f Sn,�i (x) = j
]}

, (2)

where ties are broken arbitrarily.
We begin with some helpful lemmas on the convergence analysis of random forests for multi-class learning. Given a rect-

angle cell C , we assume that there are n′ training examples falling in cell C , and denote by (x1, y1), (x2, y2), · · · , (xn′ , yn′)
without loss of generality. Recall that the conditional probabilities ηi(x j) = Pr[y j = i|x j] ( j ∈ [n′] and i ∈ [τ ]) according to 
distribution D. For instance x ∈ C , let ηi(x) = Pr[y = i|x] denote the conditional probabilities for i ∈ [τ ].

Conditioned on instances x, x1, x2, · · · , xn′ , their labels y and y j ( j ∈ [n′]) can be viewed from the following multi-
nominal distributions, respectively,

y ∼ M (η1(x),η2(x), · · · , ητ (x)) and y j ∼ M
(
η1(x j),η2(x j), · · · , ητ (x j)

)
for j ∈ [n′] .

For simplicity, we denote by

ϑi =
n′∑

j=1

I[y j = i] and ρi =
n′∑

j=1

ηi(x j)

n′ for i ∈ [τ ] . (3)

We present the following lemma to decompose a multi-class learning problem into a series of individual 3-class learning 
problems, and the detailed proof is presented in Section 6.9.

Lemma 5. For integer τ ≥ 3, let ϑ1, ϑ2, · · · , ϑτ and ρ1, ρ2, · · · , ρτ be defined by Eqn. (3). If ρ1 ≥ max(ρ2, . . . , ρτ ), then we have

ρ1 Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]\{1}
{ϑ j}

]
−

τ∑
i=2

ρi Pr
y1,...,yn′

[
ϑi = max

j∈[τ ]
{ϑ j}

]
≤

τ∑
i=2

(ρ1 − ρi) Pr
y1,...,yn′

[ϑ1 < ϑi] .

We further present the following lemma to bound (ρ1 − ρi) Pry1,...,ym [ϑ1 < ϑi] for 2 ≤ i ≤ τ , and the detailed proof is 
presented in Section 6.10.

Lemma 6. Let X1, X2, · · · , Xn′ be n′ independent random variables with Xi ∈ {−1, 0, +1}. Let η+
i = Pr[Xi = +1] and η−

i = Pr[X1 =
−1], and we have Pr[Xi = 0] = 1 − η+

i − η−
i . Write ρ+ =∑n′

i=1 η+
i /n′ and ρ− =∑n′

i=1 η−
i /n′ . If ρ+ > ρ− , then we have

(ρ+ − ρ−) Pr
X1,...,Xn′

⎡
⎣ n′∑

i=1

Xi < 0

⎤
⎦≤ 1√

en′ .

Based on Lemmas 5 and 6, we have

Lemma 7. Let C1, C2, . . . , Ck be the k disjoint rectangular cells associating with the leaves of randomized tree, and f�,Sn(x) denotes 
the classifier generated by random tree for multi-class learning. Under the L-Lipschitz assumption over η j(x) ( j ∈ [τ ]), we have, for 
every Ci (i ∈ [k]),

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]
Pr[x ∈ Ci]

≤ (τ + 2)Lν(Ci)Pr[Ci] + Ex

[
min
j∈[τ ]

{1 − η j(x)}
∣∣∣x ∈ Ci

]
Pr[Ci] + τ

√
2

en
Pr[Ci] + 3

n
.

This lemma presents a key ingredient to exploit the convergence rates of random forests for multi-class learning, and it 
is also helpful to analyze the convergence rates of other multi-class algorithms such as nearest neighbor, which may present 
independent interests in the machine learning community. The detailed proof is given in Section 6.11.

Based on Lemmas 5-7, we could study the convergence rates of different variants of random forests for multi-class 
learning, and all detailed proofs are presented in Section 6.12. We first present the convergence rates of purely random 
forests for multi-class learning as follows:

Theorem 5. Let fm(x) be the random forests classifier for multi-class learning, by applying the purely random tree to training data Sn

of k leaves (k ≥ 2). Under the L-Lipschitz assumption over conditional probability η j(x) ( j ∈ [τ ]), we have

R∗
D ≤ E Sn,�1,...,�m [RD( fm)] ≤ R∗

D + 2τ
√

(τ + 2)eLd3/2

1/8d
+ τ 2

√
2k + 3τk

.

k en n

8
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This theorem presents a convergence rate O (n−1/(8d+2)) of purely random forests for multi-class learning, by select-
ing leaves number k = O (n4d/(4d+1)). As can be seen, we achieve the same convergence of random forests for multi-class 
learning as that of binary classification (Theorem 1), but with different constants.

We present the convergence analysis of purely random forests with midpoint splitting for multi-class learning as follows:

Theorem 6. Let fm(x) be the random forests classifier for multi-class learning, by applying the purely random tree with midpoint splits 
to training data Sn of k leaves (k ≥ 2). Under the L-Lipschitz assumption over conditional probability η j(x) ( j ∈ [τ ]), we have

R∗
D ≤ E Sn,�1,...,�m [RD( fm)] ≤ R∗

D + 3τ (τ + 2)3/5L3/5d7/10

k1/3.87d
+ τ 2

√
2k

en
+ 3τk

n
.

Based on this theorem, we get a convergence rate O (n−1/(3.87d+2)) of purely random forests with midpoint splits for 
multi-class learning, by selecting leaves number k = O (n3.87d/(3.87d+2)). As can be seen, we achieve the same convergence 
rate of random forests for multi-class learning as that of binary classification (Theorem 2), but with different constants.

We further study the simplified variant of Breiman’s random tree for multi-class learning, as shown by Algorithm 1 in 
Section 4, and take the final prediction by majority vote for multiple classes. We present convergence analysis as follows:

Theorem 7. Let fm(x) be the random forests classifier for multi-class learning, by applying Algorithm 1 to training data Sn of k leaves 
(k ≥ 2 and n ≥ 4). Under the L-Lipschitz assumption over conditional probability η j(x) ( j ∈ [τ ]), we have

E Sn,�1,...,�m [RD( fm)] ≤ R∗
D + 2τ

√
k ln n

n
+ τ

4

√
4k3 lnn

n3
+ 6τk

n
+ τ 2

√
2k

en
+ τ

√
k

n
+ 8(τ 2 + 2τ )L

√
d

k1/d
.

This theorem presents a convergence rate O (n−1/(d+2)(ln n)1/(d+2)) for random forests based on Algorithm 1 for multi-
class learning, by selecting leaves number k = O ((n/ ln n)2d/(d+2)). As can be seen, we achieve the same convergence rate of 
random forests for multi-class learning as that of binary classification (Theorem 3), but with different constants.

We finally study the convergence rate of random forests under some assumptions over structural data for multi-class 
learning. Suppose that there is a constant k0 ≥ 2, such that the output random trees from Algorithm 1 have at most k0
leaves with all training examples in each leaf having the same label. Based on such assumption, we present a convergence 
rate of the simplified variant of random forests for multi-class learning.

Theorem 8. Suppose that there is a constant k0 ≥ 2, such that the output random trees from Algorithm 1 have at most k0 leaves with 
all training examples having the same label in each leaf. Let fm(x) be the random forests classifier for multi-class learning, by applying 
Algorithm 1 to training data Sn. We have

E Sn,�1,...,�m [RD( fm)] ≤ 2τ

√
k0 lnn

n
+ τ

4

√
4k3

0 ln n

n3
+ τ

√
k0

n ln n
+ 3τk0

n
.

This theorem presents a convergence rate O (
√

ln n/n) of the simplified variant of random forests in multi-class learning, 
which achieves the same convergence rate as that of binary classification (Theorem 4), but with different constants.

6. Proofs

We begin with a series of useful lemmas before the detailed proofs of our main results. The following lemma is a variant 
of Chernoff bounds from [45].

Lemma 8. Let X1, X2, . . . , Xm be m independent random variables with Xi ∈ [0, 1]. Denote by X = ∑m
i=1 Xi and p = ∑m

i=1 E[Xi]. 
We have

Pr
X1,...,Xm

[X < (1 − δ)p] ≤ exp(−pδ2/2) .

Lemma 9. For any integer k ≥ 2, we have

ln k ≤
k−1∑ 1

i
≤ 1 + ln(k − 1) .
i=1

9
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Proof. For any integer i > 0, we have

1

t
≤ 1

i
for t ∈ [i, i + 1] and

1

i
≤ 1

t
for t ∈ [i − 1, i].

It follows that

ln k =
k∫

1

1

t
dt ≤

k−1∑
i=1

1

i
≤ 1 +

k−1∫
1

1

t
dt = 1 + ln(k − 1) ,

which completes the proof. �
Lemma 10. For integers k ≥ 2 and d ≥ 2, we have

k−1∑
i=1

ln

(
1 − 3

4id

)
≥ −9 + 3 ln(k − 1)

4d
, (4)

k−1∑
i=1

ln

(
1 − 1

2id

)
≥ −3 + ln(k − 1)

2d
. (5)

Proof. We first have

k−1∑
i=1

ln

(
1 − 3

4id

)
≥ ln

(
1 − 3

4d

)
+

k−1∫
1

ln

(
1 − 3

4dt

)
dt

= ln

(
1 − 3

4d

)
+
[

t ln

(
1 − 3

4dt

)]k−1

1
−

k−1∫
1

3

4dt − 3
dt

= (k − 1) ln

(
1 − 3

4d(k − 1)

)
− 3

4d
ln

(
k − 1 − 3

4d

)
+ 3

4d
ln

(
1 − 3

4d

)
.

It is easy to observe ln(k − 1 − 3/4d) ≤ ln(k − 1), and

(k − 1) ln

(
1 − 3

4d(k − 1)

)
+ 3

4d
ln

(
1 − 3

4d

)
≥ − 3

2d
− 9

8d2
≥ −33

16d
≥ −9

4d
,

by using ln(1 − x) ≥ −2x for x ∈ [0, 1/2] and d ≥ 2. Eqn. (4) holds by simple calculations.
For Eqn. (5), we similarly have

k−1∑
i=1

ln

(
1 − 1

2id

)
≥ ln

(
1 − 1

2d

)
+

k−1∫
1

ln

(
1 − 1

2dt

)
dt

= ln

(
1 − 1

2d

)
+
[

t ln

(
1 − 1

2dt

)]k−1

1
−

k−1∫
1

1

2dt − 1
dt

= (k − 1) ln

(
1 − 1

2d(k − 1)

)
− 1

2d
ln

(
k − 1 − 1

2d

)
+ 1

2d
ln

(
1 − 1

2d

)
.

It follows that, by using ln(1 − x) > −2x for x ∈ [0, 1/2] and for d ≥ 2,

(k − 1) ln

(
1 − 1

2d(k − 1)

)
+ 1

2d
ln

(
1 − 1

2d

)
≥ −1

d
− 1

2d2
≥ − 5

4d
≥ − 3

2d
,

which completes the proof of Eqn. (5) by simple calculations. �

10
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6.1. Proof of Lemma 1

For every x ∈X , we denote by η∗(x) = max j∈[τ ]{η j(x)}. This follows that, from the definitions of RD(h) and R∗
D ,

E�

[
RD

(
f Sn,�

)]− R∗
D = Ex∼DX

⎡
⎣ τ∑

j=1

Pr
�

[
f Sn,�(x) = j

] (
η∗(x) − η j(x)

)⎤⎦ .

In a similar manner, we have

E�1,...,�m [RD ( fm)] − R∗
D = Ex∼DX

⎡
⎣ τ∑

j=1

Pr
�1,...,�m

[ fm(x) = j]
(
η∗(x) − η j(x)

)⎤⎦ .

For j ∈ [τ ], we have, by Markov’s inequality,

Pr
�1,...,�m

[ fm(x) = j] ≤ Pr
�1,...,�m

[
m∑

i=1

I
[

f Sn,� j (x) = j
]≥ m

τ

]

≤ τ

m

m∑
i=1

E�i

[
I
[

f Sn,�i (x) = j
]]= τ

m

m∑
i=1

Pr
�i

[
f Sn,�i (x) = j

]= τPr
�

[
f Sn,�(x) = j

]
,

which completes the proof. �
6.2. Proof of Lemma 2

For k ≥ 2, let X1, X2, · · · , Xk−1 denote k − 1 independent Bernoulli random variables with Xi ∼ B(1/i) for i ∈ [k − 1]. For 
any instance x ∈X , we have

h(C(x)) =
k−1∑
i=1

Xi and E X1,X2,··· ,Xk [h(C(x))] =
k−1∑
i=1

1

i
.

Based on Lemma 9, we have

ln k ≤ E[h(Ci)] ≤ 1 + ln(k − 1) .

It follows that, for any λ < 0 and by Markov’s inequality,

Pr

[
k−1∑
i=1

Xi − E[Xi] ≤ −ε

]
≤ exp

(
λε − λ

k−1∑
i=1

1

i

)
E

[
exp

(
k−1∑
i=1

λXi

)]
. (6)

We have, from the independence of random variables X1, X2, . . . , Xk−1 with Xi ∼ B(1/i),

E

[
exp

(
k−1∑
i=1

λXi

)]
=

k−1∏
i=1

E [exp (λXi)] = exp

(
k−1∑
i=1

ln

(
1 − 1

i
+ 1

i
eλ

))
. (7)

Denote by

gi(λ) = ln

(
1 − 1

i
+ 1

i
eλ

)
,

and we have

g′
i(λ) = eλ

i − 1 + eλ
,

g′′
i (λ) = eλ

i − 1 + eλ
− e2λ

(i − 1 + eλ)2
≤ eλ

i − 1 + eλ
<

1

i
for λ < 0.

Based on the Taylor expansions, we have

gi(λ) ≤ gi(0) + λg′
i(0) + λ2

2i
= λ

i
+ λ2

2i
.

Combining with Eqns. (6) and (7), this yields
11
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Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≤ −ε

]
≤ exp

(
λε + λ2

2

k−1∑
i=1

1

i

)
.

By setting λ = −ε/ 
∑k−1

i=1 1/i, we have

Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≤ −ε

]
≤ exp

(
− ε2

2
∑k−1

i=1 1/i

)
.

It follows that, by setting ε = ε
∑k−1

i=1 1/i and from Lemma 9,

Pr
X1,X2,...,Xk

[h(C(x)) < (1 − ε) ln k] ≤ k−ε2/2 .

In a similar manner, we have, for any λ > 0,

Pr

[
k−1∑
i=1

(Xi − E[Xi]) ≥ ε

]
≤ exp

(
−λε − λ

k−1∑
i=1

1

i

)
E

[
exp

(
k−1∑
i=1

λXi

)]
≤ exp

(
−λε + λ2

2

k−1∑
i=1

1

i

)
.

By setting λ = ε/ 
∑k−1

i=1 1/i, we have

Pr

[
k−1∑
i=1

Xi −
k−1∑
i=1

1

i
≥ ε

]
≤ exp

(
− ε2

2
∑k−1

i=1 1/i

)
.

We further set ε = ε
∑k−1

i=1 1/i in the above, and this follows that, from Lemma 9,

Pr
X1,X2,...,Xk−1

[h(C(x)) ≥ (1 + ε)(1 + ln(k − 1))] ≤ k−ε2/2 ,

which completes the proof. �
6.3. Proof of Lemma 3

Given any instance x ∈ X , recall that C(x) denotes the rectangular cell containing instance x, and X1, X2, · · · , Xk−1
characterize the random events that the node containing instance x was selected for splitting in the construction of random 
tree, where Xi ∼ B(1/i).

For j ∈ [d], let � j(C(x)) denote the length of the j-th dimension of rectangular cell C(x), and it is necessary to introduce 
the following random variables to analyze � j(C(x)).

• Let Y1, j, Y2, j, · · · , Yk−1, j denote k − 1 Bernoulli random variables such that Yi, j ∼ B(1/d) for i ∈ [k − 1]. Here, Yi, j = 1
denotes the random event that the j-th coordinate of the node, that contains the instance x, is selected for random 
partition under the condition Xi = 1. We use Yi, j to illustrate the selection of coordinates with identical probability.

• Let U1, j, U2, j, · · · , Uk−1, j denote k − 1 random variables with uniform distribution over [0, 1], i.e., Ui, j ∼ U [0, 1] for 
i ∈ [k − 1]. Here, we use random variable Ui, j to characterize the uniform and random splitting of the j-th coordinate 
of the node containing x under the condition Xi Yi, j = 1 during the i-th construction of random tree.

It is easy to upper and lower bound � j(C(x)) as follows:

k−1∏
i=1

min(1 − Ui, j, Ui, j)
Xi Yi, j ≤ � j(C(x)) ≤

k−1∏
i=1

max(1 − Ui, j, Ui, j)
Xi Yi, j . (8)

Lemma 11. For k ≥ 2 and j ∈ [d], we have

E

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
Xi Yi, j

]
=

k−1∏
i=1

(
1 − 1

4id

)
≤ exp

(
− ln k

4d

)
, (9)

E

[
k−1∏
i=1

(min(Ui, j,1 − Ui, j))
Xi Yi, j

]
=

k−1∏
i=1

(
1 − 3

4id

)
≥ exp

(
−9 + 3 ln(k − 1)

4d

)
, (10)

and we also have, for any instance x ∈X ,
12
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exp

(
−9 + 3 ln(k − 1)

4d

)
≤ E[� j(C(x))] ≤ exp

(
− ln k

4d

)
.

Here, all expectations take over independent random variables X1, . . . , Xk−1 , Y1, j, . . . , Yk−1, j and U1, j, . . . , Uk−1, j with Xi ∼ B(1/i), 
Yi, j ∼ B(1/d) and Ui, j ∼ U(0, 1) for i ∈ [k − 1].

Proof. For Eqn. (9), we first write Zi, j = (max(Ui, j, 1 − Ui, j))
Xi Yi, j , and it follows that

E Xi ,Yi, j ,Ui, j [Zi, j] = 1 − 1

id
+ 1

id
EUi, j [max(Ui, j,1 − Ui, j)] = 1 − 1

4id
,

by using the fact

EUi, j [max(Ui, j,1 − Ui, j)] =
1∫

0

max(Ui, j,1 − Ui, j)dUi, j =
1/2∫
0

(1 − Ui, j)dUi, j +
1∫

1/2

Ui, jdUi, j = 3

4
.

It holds that, from Lemma 9 and by using the fact 1 − x ≤ e−x ,

E

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
Xi Yi, j

]
=

k−1∏
i=1

(
1 − 1

4id

)
≤ exp

(
− 1

4d

k−1∑
i=1

1

i

)
≤ exp

(
− ln k

4d

)
.

In a similar manner, we have

E Xi ,Yi, j ,Ui, j

[
(min(Ui, j,1 − Ui, j))

Xi Yi, j

]
= 1 − 1

id
+ 1

id
EUi, j [min(Ui, j,1 − Ui, j)] = 1 − 3

4id
,

by using the fact

EUi, j [min(Ui, j,1 − Ui, j)] =
1∫

0

min(Ui, j,1 − Ui, j)dUi, j =
1/2∫
0

Ui, jdUi, j +
1∫

1/2

(1 − Ui, j)dUi, j = 1

4
.

It follows that

E

[
k−1∏
i=1

(min(Ui, j,1 − Ui, j))
Xi Yi, j

]
=

k−1∏
i=1

(
1 − 3

4id

)
= exp

(
k−1∑
i=1

ln

(
1 − 3

4id

))
,

which completes the proof of Eqn. (10) by combining with Lemma 10. �
Lemma 12. For integer k ≥ 2, j ∈ [d] and real ε > −1, we have

Pr

[
k−1∏
i=1

(
max(Ui, j,1 − Ui, j)

)Xi Yi, j ≥ (1 + ε)exp

(
− ln k

8d

)]
≤ e

(1 + ε)k1/8d
,

where the probability takes over random variables X1, . . . , Xk−1 , Y1, j, . . . , Yk−1, j and U1, j , . . . , Uk−1, j with Xi ∼ B(1/i), Yi, j ∼
B(1/d) and Ui, j ∼ U(0, 1) for i ∈ [k − 1].

Proof. Based on the Markov’s inequality and Lemma 11, we have, for any λ > 0,

Pr

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
Xi Yi, j ≥ (1 + ε)exp

(
− ln k

8d

)]

= Pr

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
λXi Yi, j ≥ (1 + ε)λ

(
exp

(
− ln k

8d

))λ
]

≤ (1 + ε)−λ exp

(
λ ln k

8d

)
× E

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
λXi Yi, j

]
.

Let Zi, j = (max(Ui, j, 1 − Ui, j))
λXi Yi, j , and we have
13
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E Xi∼B(1/i),Yi, j∼B(1/d),Ui, j∼U(0,1)[Zi, j]

= 1 − 1

id
+ 1

id
EUi, j∼U(0,1)[(max(Ui, j,1 − Ui, j))

λ] ≤ 1 − 1

id
+ 2 − 1/2λ

id(λ + 1)
,

where the last equation holds from

EUi, j∼U(0,1)[(max(Ui, j,1 − Ui, j))
λ] =

1/2∫
0

(1 − Ui, j)
λdUi, j +

1∫
1/2

Uλ
i, jdUi, j = 2 − 1/2λ

λ + 1
.

It follows that, by using 1 + x ≤ ex ,

E

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
λXi Yi, j

]
≤ exp

(
−

k−1∑
i=1

1

id
+

k−1∑
i=1

2 − 1/2λ

(λ + 1)id

)
.

Based on Lemma 9, we have

E

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
λXi Yi, j

]
≤ exp

(
− ln k

d
+ (2 − 1/2λ)(1 + ln(k − 1))

(λ + 1)d

)
.

In summary, we have

Pr

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
Xi Yi, j ≥ (1 + ε)exp

(
ln k

8d

)]

≤ exp

(
−λ ln(1 + ε) − ln k

d
+ λ ln k

8d
+ (2 − 1/2λ)(1 + ln(k − 1))

(λ + 1)d

)
.

By setting λ = 1, we have

Pr

[
k−1∏
i=1

(max(Ui, j,1 − Ui, j))
Xi Yi, j ≥ (1 + ε)exp

(
ln k

8d

)]

≤ exp

(
− ln(1 + ε) − 7 ln k

8d
+ 3(1 + ln(k − 1))

4d

)
≤ e3/4d

(1 + ε)1/8d
,

which completes the proof for dimension d ≥ 1. �
Proof of Lemma 3. Based on the union bounds, we have

Pr

[
ν[C(x)] ≥ (1 + ε)

√
d

k1/8d

]
= Pr

[
ν[C(x)] ≥ (1 + ε)

√
d exp

(
− ln k

8d

)]

≤ Pr

[
∃ j ∈ [d] : � j(C(x)) ≥ (1 + ε)exp

(
− ln k

8d

)]

≤ d Pr

[
�1(C(x)) ≥ (1 + ε)exp

(
− ln k

8d

)]

≤ d Pr

[
k−1∏
i=1

(
max(Ui,1,1 − Ui,1)

)Xi Yi,1 ≥ (1 + ε)exp

(
− ln k

8d

)]
≤ ed

(1 + ε)k1/8d
,

where the last inequality holds from Lemma 12. This completes the proof. �
6.4. Proof of Lemma 4

It is necessary to introduce two lemmas as follows:

Lemma 13. For any rectangular cell Ci ⊆X , we have

Pr[x ∈ Ci]Pr [|Ci ∩ Sn| < n Pr[x ∈ Ci]/2] ≤ 3/n .
14
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Proof. From Lemma 8, we have

Pr [|Ci ∩ Sn| < n Pr[x ∈ Ci]/2] ≤ exp(−n Pr[x ∈ Ci]/8) ,

and it holds that

Pr[x ∈ Ci]Pr [|Ci ∩ Sn| < n Pr[x ∈ Ci]/2] ≤ 8

ne
≤ 3

n

by using maxx xe−ax ≤ 1/ae. This completes the proof. �
Lemma 14. Let X1, X2, . . . , Xm be m independent random variables with Xi ∼ B(ηi) for i ∈ [m], and set ρ = ∑m

i=1 ηi/m. For ρ ∈
[0, 1/2), we have

(1 − 2ρ) Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi ≥ m

2

]
≤ 1√

2m
. (11)

For ρ ∈ [1/2, 1], we also have

(2ρ − 1) Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi <
m

2

]
≤ 1√

2m
. (12)

Proof. For any λ > 0, we have, from the Markov’s inequality,

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi ≥ m

2

]

≤ e−mλ/2 E
X1∼B(η1),...,Xm∼B(ηm)

[
exp

(
λ

m∑
i=1

Xi

)]
= e−mλ/2

m∏
i=1

E
Xi∼B(ηi)

[exp(λXi)] .

From Xi ∼ B(ηi), we have

E [exp(λXi)] = 1 − ηie
0 + ηie

λ ≤ exp(ηi(eλ − 1)) .

Write ρ =∑m
i=1 ηi/m, and it holds that

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi ≥ m

2

]
≤ exp(−mλ/2 + mρ(eλ − 1)) .

By setting λ = − ln(2ρ), we have

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi ≥ m

2

]
≤ exp(m/2 + m ln(2ρ)/2 − mρ) . (13)

We introduce another function

g1(ρ) = (1 − 2ρ)exp(m/2 + m ln(2ρ)/2 − mρ) , (14)

and the derivative is given by

g′
1(ρ) = exp(m/2 + m ln(2ρ)/2 − mρ)(2ρm − 2m − 2 + m/2ρ) .

Solving g′
1(ρ) = 0 gives the optimal solution

ρ∗ = 1

2
− 1

1 + √
2m + 1

.

It is easy to find that, for continuous function g(ρ) with ρ ∈ [0, 1/2)

g1(ρ) ≤ max
ρ∈[0,1/2)

g1(ρ) = max{g1(0), g1(1/2), g1(ρ
∗)} = g1(ρ

∗) , (15)

and we further have

g1(ρ
∗) = 1√ exp

(
m√ + m

ln

(
1 − 2√

))
≤ 1√ ≤ 1√ ,
1 + 1 + 2m 1 + 1 + 2m 2 1 + 1 + 2m 1 + 1 + 2m 2m

15
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where the first inequality holds from ln(1 − x) ≤ −x. Hence, Eqn. (11) holds from Eqns. (13)-(15).
For Eqn. (12), we similarly have, by using Markov’s inequality,

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi <
m

2

]
≤ exp(−mλ/2 + mρ(eλ − 1))

for λ ≤ 0. By setting λ = − ln(2ρ) for ρ ∈ [1/2, 1], we have

Pr
X1∼B(η1),...,Xm∼B(ηm)

[
m∑

i=1

Xi <
m

2

]
≤ exp(m/2 + m ln(2ρ)/2 − mρ) . (16)

We also introduce another function

g2(ρ) = (2ρ − 1)exp(m/2 + m ln(2ρ)/2 − mρ) , (17)

and solving g′
2(ρ) = 0 gives the optimal solution

ρ∗ = 1

2
+ 1

1 + √
2m + 1

.

It is easy to find that, for continuous function g(ρ) with ρ ∈ [1/2, 1],
g2(ρ) ≤ max

ρ∈[0,1/2)
g(ρ) = max{g2(1/2), g2(1), g(ρ∗)} = g2(ρ

∗) ≤ 1/
√

2m .

This proves Eqn. (12) by combining with Eqns. (16) and (17). �
Proof of Lemma 4. This lemma holds obviously when Pr[x ∈ Ci] = 0, and it suffices to consider Pr[x ∈ Ci] > 0. We introduce 
the random events

�1 = {|Ci ∩ Sn| ≥ n Pr[x ∈ Ci]/2} and �2 = {|Ci ∩ Sn| < n Pr[x ∈ Ci]/2} .

Based on the law of total probability, we have

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]= Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[�1] + Pr

Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�2

]
Pr[�2] .

It follows that, from Lemma 13,

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]
Pr[x ∈ Ci] ≤ Pr

Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[x ∈ Ci]Pr[�1] + 3/n . (18)

To bound the term PrSn,(x,y)

[
f�,Sn (x) = y|x ∈ Ci,�1

]
, we further introduce the set Si

n of training examples falling into the 
cell Ci , that is, Si

n = {
(x j, y j) : (x j, y j) ∈ Sn and x j ∈ Ci

}
. Under the condition �1, we have

m := |Si
n| = |Sn ∩ Ci | ≥ n Pr[Ci]/2 . (19)

Without loss of generality, we denote by Si
n = {(x1, y1), (x2, y2), . . . , (xm, ym)}. For instance x ∈ Ci , its label can be predicted 

by random forests classifier as

f�,Sn(x) = I

⎡
⎣ m∑

j=1

y j ≥ m/2

⎤
⎦ .

Conditioned on x, x1, x2, . . . , xm , we can observe that y ∼ B(η1(x)) and y j ∼ B(η1(x j)) for j ∈ [m], and set ρ =∑m
j=1 η1(x j)/m. It follows that

Pr
y1,...,ym,y

[
f�,Sn(x) = y|x1, . . . , xn

]= η1(x) Pr
y1,...,ym

⎡
⎣ m∑

j=1

y j <
m

2

⎤
⎦+ (1 − η1(x)) Pr

y1,...,ym

⎡
⎣ m∑

j=1

y j ≥ m

2

⎤
⎦ . (20)

If ρ ∈ [0, 1/2), then we have, from Eqn. (20)

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]= η1(x) + (1 − 2η1(x)) Pr
y1,...,ym

⎡
⎣ m∑

j=1

y j ≥ m

2

⎤
⎦ ,

and it follows that:
16
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• If η1(x) = 1/2, then we have 1 − 2η1(x) = 0 and

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]= η1(x) = min{η1(x),1 − η1(x)} .

• If η1(x) > 1/2, then we have 1 − 2η1(x) < 0, and for ρ ∈ [0, 1/2), we also have

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]
< η1(x) = min{η1(x),1 − η1(x)} + 2η1(x) − 1

≤ min{η1(x),1 − η1(x)} + 2|η1(x) − ρ| .

• If η1(x) < 1/2, then we have

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]

≤ min{η1(x),1 − η1(x)} + 2|η1(x) − ρ| + (1 − 2ρ) Pr
y1,...,ym

⎡
⎣ m∑

j=1

y j ≥ m

2

⎤
⎦

≤ min{η1(x),1 − η1(x)} + 2|η1(x) − ρ| + 1/
√

2m ,

where the last inequality holds from ρ ∈ [0, 1/2) and Eqn. (11) in Lemma 14.

In summary, we have, for ρ ∈ [0, 1/2),

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]≤ min{η1(x),1 − η1(x)} + 2|η1(x) − ρ| + 1/
√

2m .

In a similar manner, we have, for ρ ∈ [1/2, 1],

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]= 1 − η1(x) + (2η1(x) − 1) Pr
y1,...,ym

⎡
⎣ m∑

j=1

y j ≥ m

2

⎤
⎦

≤ min{η1(x),1 − η1(x)} + 2|η1(x) − ρ| + 1/
√

2m .

From the L-Lipschtiz assumption, we have, for x, x1, . . . , xm ∈ Ci ,

|η1(x) − ρ| =
∣∣∣∣∣∣η1(x) −

m∑
j=1

η1(x j)

m

∣∣∣∣∣∣≤
m∑

j=1

∣∣η1(x) − η1(x j)
∣∣/m ≤ Lν(Ci) .

It follows that

Pr
y1,...,ym,y

[
f�,Sn(x) = y

]≤ min{η1(x),1 − η1(x)} + 2Lν(Ci) + 1/
√

2m .

Hence, we have, from Eqn. (19)

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[Ci]Pr[�1]

≤ Ex[min{η1(x),1 − η1(x)}|x ∈ Ci]Pr[Ci] + 2Lν(Ci)Pr[Ci] +√
Pr[Ci]/n ,

which completes the proof by combining with Eqn. (18). �
6.5. Proof of Theorem 1

It suffices to derive the convergence rate of individual random tree classifier f Sn,�(x), and we complete the proof by 
combining with Lemma 1. We first have

RD( f Sn,�) = Pr
(x,y)∼D

[ f�,Sn(x) = y] = Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y]

]
.

For random tree classifier f�,Sn (x), we associate a set as follows:

 =
{

x ∈ X : ν(C(x)) ≥ (1 + ε)
√

d/k1/8d
}

, (21)

where ν(C(x)) denotes the diameter of rectangle cell C(x). It follows that
17
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RD( f Sn,�) = Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y] (I[x ∈ ] + I[x /∈ ])

]

≤ Ex∼DX [I[x ∈ ]] + Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y]I[x /∈ ]

]
. (22)

Notice that C1, C2, . . . , Ck is a partition of the instance space X from the construction of random tree. Based on the law of 
total probability, we have

Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y]I[x /∈ ]

]
=

k∑
i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci �] ,

by using the fact C(x) = Ci for every x ∈ Ci . Combining with Eqns. (21) and (22), we have

E Sn,�

[
RD( f Sn,�)

]≤ Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]
(23)

+E�

[
k∑

i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � ]
]

. (24)

From Lemma 3, Eqn. (23) can be further upper bounded by

Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]
≤ ed

(1 + ε)k1/8d
. (25)

Based on Lemma 4 and Eqn. (21), we can bound Eqn. (24) as follows

k∑
i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � ] ≤ R∗
D + 2(1 + ε)L

√
d

k1/8d
+

k∑
i=1

√
Pr[Ci]

n
+ 3k

n
, (26)

where we use the law of total expectation and R∗
D = Ex∼DX [min{η1(x), 1 − η1(x)}]. By using the Jensen’s inequality, we 

have (E X)2 ≤ E[X2], which gives

(
1

k

k∑
i=1

√
Pr[Ci]

)2

≤ 1

k

k∑
i=1

Pr[Ci] = 1

k
.

It follows that, by combining with Eqns. (23)-(26),

E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + ed

(1 + ε)k1/8d
+ 2(1 + ε)L

√
d

k1/8d
+
√

k

n
+ 3k

n
.

We have, by setting ε =
√

e
√

d/2L − 1 and algebra calculations,

E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + 2

√
2eLd3/2

k1/8d
+
√

k

n
+ 3k

n
,

which completes the proof by combining with Lemma 1. �
6.6. Proof of Theorem 2

We first introduce some lemmas before the proof of Theorem 2.

Lemma 15. For integer k ≥ 2, d ≥ 2, j ∈ [d] and real ε > −1, we have

Pr

[
k−1∏
i=1

(
1

2

)Xi Yi, j

≥ (1 + ε)exp

(
− ln k

4d

)]
≤ 3/2

(1 + ε)3/2k1/3.6846d
,

where the probability takes over random variables X1, . . . , Xk−1, Y1, j, . . . , Yk−1, j with Xi ∼ B(1/i) and Yi, j ∼ B(1/d) for i ∈ [k − 1].
18
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Proof. For any λ > 0, we have, based on the Markov’s inequality,

Pr

[
k−1∏
i=1

(
1

2

)Xi Yi, j

≥ (1 + ε)exp

(
− ln k

4d

)]

= Pr

[
k−1∏
i=1

(
1

2

)λXi Yi, j

≥ (1 + ε)exp

(
− ln k

4d

)]

≤ (1 + ε)−λ exp

(
λ ln k

4d

)
× E

[
k−1∏
i=1

(
1

2

)λXi Yi, j
]

.

From Xi ∼ B(1/i) and Yi, j ∼ B(1/d) (i ∈ [k − 1]), we have, by using 1 + x ≤ ex ,

E

[
k−1∏
i=1

(
1

2

)λXi Yi, j
]

=
k−1∏
i=1

(
1 − 1

id
+ 1

id2λ

)
≤ exp

(
−

k−1∑
i=1

1

id
+

k−1∑
i=1

1

id2λ

)
,

which yields that

Pr

[
k−1∏
i=1

(
1

2

)Xi Yi, j

≥ (1 + ε)exp

(
− ln k

4d

)]
≤ exp

(
−λ ln(1 + ε) + λ ln k

4d
−

k−1∑
i=1

1

id
+

k−1∑
i=1

1

id2λ

)
.

By setting λ = 3/2, we have

Pr

[
k−1∏
i=1

(max(Ui,1 − Ui))
Xi Yi, j ≥ (1 + ε)exp

(
− ln k

4d

)]

≤ exp

(
−3

2
ln(1 + ε) − 5 ln k

8d
+ 1 + ln(k − 1)

2
√

2d

)
≤ e1/(2

√
2d)

(1 + ε)3/2k1/3.6846d
,

which completes the proof by using e1/(2
√

2d) ≤ 3/2. �
Based on Lemma 15, we can bound the diameter ν(C(x)) as follows:

Lemma 16. For real ε > −1 and instance x ∈X , we have

Pr
[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
,

where the probability takes over random selection of splitting leaves and dimensions.

Proof. For j ∈ [d], recall that � j(C(x)) denotes the length of the j-th coordinate of C(x) for j ∈ [d]. Let X1, . . . , Xk−1,

Y1, j, . . . , Yk−1, j be random variables with Xi ∼ B(1/i) and Yi, j ∼ B(1/d) for i ∈ [k − 1]. According to the construction of 
purely random tree with midpoint split, we have

� j(C(x)) = 1/2Xi Yi, j .

Based on Lemma 15, we have

Pr

[
� j(C(x)) ≥ (1 + ε)exp

(
− ln k

4d

)]
≤ 3/2

(1 + ε)3/2k1/3.6846d
. (27)

Based on union bounds, we have

Pr
[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]
= Pr

[
ν[C(x)] ≥ (1 + ε)

√
d exp

(
− ln k

4d

)]

≤ Pr

[
∃ j ∈ [d] : � j(C(x)) ≥ (1 + ε)exp

(
− ln k

4d

)]

≤ d Pr

[
�1(C(x)) ≥ (1 + ε)exp

(
− ln k

4d

)]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
,

where the last inequality holds from Eqn. (27). �
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Proof of Theorem 2. Similarly to Theorem 1, we first study the convergence rate of individual random tree classifier 
f Sn,�(x). Based on the law of total probability, we have

RD( f Sn,�) = Pr
(x,y)∼D

[ f�,Sn(x) = y] = Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y]

]
.

For random forests classifier f�,Sn (x), we associate a set as follows

2 =
{

x ∈ X : ν(C(x)) ≥ (1 + ε)
√

d/k1/4d
}

, (28)

and it follows that

RD( f Sn,�) ≤ Ex∼DX [I[x ∈ 2]] + Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y|x]I[x /∈ 2]

]
. (29)

Notice that C1, C2, . . . , Ck is a partition of the instance space X , and we have

Ex∼DX

[
Pr

y∼B(η1(x))
[ f�,Sn(x) = y]I[x /∈ 2]

]
=

k∑
i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci � 2] ,

where we use the fact C(x) = Ci for every x ∈ Ci . It follows that, from Eqns. (28) and (29),

E Sn,�

[
RD( f Sn,�)

]≤ Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d

(1 + k)1/4d

]]
(30)

+ E�

[
k∑

i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci �2]
]

. (31)

From Lemma 16, Eqn. (30) can be further upper bounded by

Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
. (32)

Based on Lemma 4 and Eqn. (28), we can bound the term in Eqn. (31) as

k∑
i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � 2] ≤ R∗
D + 2(1 + ε)L

√
d

k1/4d
+
√

k

n
+ 3k

n
. (33)

It follows that, by combining with Eqns. (30)-(33),

E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + 3d/2

(1 + ε)3/2k1/3.6846d
+ 2(1 + ε)L

√
d

k1/4d
+
√

k

n
+ 3k

n
.

By setting

ε =
(

9
√

d

8L
k

1
4d − 1

3.6848d

)2/5

− 1 ,

we have, by simple algebraic calculations,

E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + 4L3/5d7/10

k1/3.87d
+
√

k

n
+ 3k

n
,

which completes the proof by combining with Lemma 1. �
6.7. Proof of Theorem 3

We begin with a lemma as follows:

Lemma 17. Let Sn be a training data drawn i.i.d. from distribution D. For any rectangle cell C ⊆X and integer κ ≥ 2, we have

Pr[x ∈ C]Pr[|C ∩ Sn| ≤ κ] ≤ κ

n

(
1 +

√
2

κ

)
.
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Proof. For any δ ∈ (0, 1), if κ ≤ (1 − δ)n Pr[x ∈ C], then we have, based on Lemma 8,

Pr[|C ∩ Sn| ≤ κ] ≤ Pr[|C ∩ Sn| ≤ (1 − δ)n Pr[x ∈ C]] ≤ exp(−n Pr[x ∈ C]δ2/2) .

It follows that, by using maxx xe−ax = 1/ae,

Pr[x ∈ C]Pr[|C ∩ Sn| ≤ κ] ≤ Pr[x ∈ C]exp(−n Pr[x ∈ C]δ2/2) ≤ 2

neδ2
.

If κ ≥ (1 − δ)n Pr[x ∈ C], then we have

Pr[x ∈ C]Pr[|C ∩ Sn| ≤ κ] ≤ Pr[x ∈ C] ≤ κ

n(1 − δ)
.

By setting δ = (
√

1 + 2κe − 1)/κe, we have

κ

n(1 − δ)
= 2

neδ2
= κ

n
× κe + 1 + √

2κe + 1

κe
≤ κ

n

(
1 +

√
2

κ

)
for κ ≥ 2,

which completes the proof. �
Proof of Theorem 3. Similarly to the proof of Theorem 1, we first present the convergence rate of individual random tree 
classifier f Sn,�(x) according to Algorithm 1. Let C1, C2, . . . , Ck be a partition of instance space X , which are associated with 
k leaves of random tree. Based on the law of total probability, we have the classification error of random forests classifier 
f�,Sn (x) with respect to distribution D

RD( f Sn,�) = Pr
(x,y)∼D

[ f�,Sn(x) = y] =
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci] .

We introduce a set

3 = {Ci : all training examples in Ci have the same label}.
It follows that

RD( f Sn,�) =
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci ∈ 3] (34)

+
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci /∈ 3] . (35)

If Ci ∈ 3, then we have, for κ ≥ 2,

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
= Pr[Ci]Pr[ f�,Sn(x) = y, |Ci ∩ Sn| ≤ κ |x ∈ Ci] + Pr[Ci]Pr[ f�,Sn(x) = y, |Ci ∩ Sn| > κ |x ∈ Ci]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[ f�,Sn(x) = y

∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] .

From Ci ∈ 3, all training examples in Ci have the same label, and we assume positive training examples in Ci without loss 
of generality. Then, we have f�,Sn (x) = 1 for all x ∈ Ci . Denote by the expected conditional probability over cell Ci

η̄1(Ci) = E[η1(x)|x ∈ Ci] .

If η̄1(Ci) ≥ 1 − ε , then we have

Pr[ f�,Sn(x) = y
∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] ≤ ε ;

If η̄1(Ci) < 1 − ε and Ci ∈ 3, then we have

Pr[ f�,Sn(x) = y
∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] ≤ Pr[|Ci ∩ Sn| > κ] ≤ exp(−κε) .

This follows that, for Ci ∈ 3,

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[Ci](ε + exp(−κε)) .
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By setting ε = (lnκ)/κ , we have

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[Ci]1 + lnκ

κ
.

It follows that, by combining with Lemma 17 and Eqns. (34)-(35)

E Sn,�[RD( f Sn,�)] ≤ kκ
(
1 + √

2/κ
)

n
+ 1 + lnκ

κ
+

k∑
i=1

E Sn,�

[
Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci /∈ 3]

]
. (36)

For Ci /∈ 3, we have different labels in Ci . It follows the height h(Ci) ≥ log2 k −2 and the splitting times for each dimension 
are more than (log2 k − 2)/d − 1 from the construction of random tree in Algorithm 1. Hence, we upper bound the diameter 
of rectangle cell Ci as follows:

ν(Ci) ≤ √
d

(
1

2

)(log2 k−2)/d−1

= 21+2/d
√

d

k1/d
≤ 8

√
d

k1/d
.

It follows that, from Lemma 4 and Eqn. (36),

E Sn,�[RD( f Sn,�)] ≤ R∗
D + kκ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) + 16L

√
d

k1/d
+ 3k

n
+

k∑
i=1

√
Pr[Ci]

n

≤ R∗
D + kκ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) + 16L

√
d

k1/d
+ 3k

n
+
√

k

n
.

We have, by setting κ =
⌈√

n ln n/k
⌉

and algebra calculations,

E Sn,�

[
RD( f Sn,�)

]
≤ R∗

D +
√

k lnn

n
+ 4

√
4k3 ln n

n3
+
√

k

n lnn

(
1 + 1

2
ln

n lnn

k

)
+ 6k

n
+
√

k

n
+ 16L

√
d

k1/d

≤ R∗
D + 2

√
k lnn

n
+ 4

√
4k3 ln n

n3
+ 6k

n
+ 2

√
k

n
+ 16L

√
d

k1/d
(n ≥ 4,k ≥ 2),

which completes the proof by combining with Lemma 1. �
6.8. Proof of Theorem 4

The proof is essentially similar to that of Theorem 3. Given a random tree classifier f�,Sn (x) with k leaves (k ≤ k0), let 
C1, C2, . . . , Ck be a partition of the instance space X . Based on the law of total probability, we have the classification error 
of random forests classifier f�,Sn (x) over distribution D

RD( f Sn,�) = Pr
(x,y)∼D

[ f�,Sn(x) = y] =
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci] . (37)

For any i ∈ [k] and κ ≥ 1, we have

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
= Pr[Ci]Pr[ f�,Sn(x) = y, |Ci ∩ Sn| ≤ κ |x ∈ Ci] + Pr[Ci]Pr[ f�,Sn(x) = y, |Ci ∩ Sn| > κ |x ∈ Ci] . (38)

From Lemma 17, we have

E Sn

[
Pr[Ci]Pr[ f�,Sn(x) = y, |Ci ∩ Sn| ≤ κ |x ∈ Ci]

]≤ κ

n

(
1 +

√
2

κ

)
. (39)

From the assumption in Theorem 4, we see that all training examples in each Ci have the same label, and we assume 
positive training examples in Ci without loss of generality. It follows that f�,Sn (x) = 1 for all x ∈ Ci . Denote by

η̄1(Ci) = E[η1(x)|x ∈ Ci]
the expected conditional probability over the rectangle cell Ci . If η̄1(Ci) ≥ 1 − ε , then we have
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Pr[ f�,Sn(x) = y, |Ci ∩ Sn| > κ
∣∣x ∈ Ci] ≤ ε ;

If η̄1(Ci) < 1 − ε and Ci ∈ 3, then we have

Pr[ f�,Sn(x) = y, |Ci ∩ Sn| > κ
∣∣x ∈ Ci] ≤ (1 − ε)κ ≤ exp(−κε) .

It follows that, by setting ε = (lnκ)/κ ,

Pr[ f�,Sn(x) = y, |Ci ∩ Sn| > κ
∣∣x ∈ Ci] ≤ ε + exp(−κε) ≤ (1 + lnκ)/κ . (40)

Combining with Eqns. (37)-(40), we have

E Sn,�[RD( f Sn,�)] ≤ kκ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) ≤ k0κ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) .

By setting κ =
⌈√

n ln n/k0

⌉
and simple algebraic calculations, we have

E Sn,�[RD( f Sn,�)] ≤ 2

√
k0 lnn

n
+ 4

√
4k3

0 ln n

n3
+ 3k0

n
+
√

k0

n lnn
,

which completes the proof by combining with Lemma 1. �
6.9. Proof of Lemma 5

We begin with two lemmas before the proof of Lemma 5.

Lemma 18. For τ = 3, let ϑ1, ϑ2, ϑ3 and ρ1, ρ2, ρ3 be defined by Eqn. (3). If ρ1 ≥ max(ρ2, ρ3), then we have

ρ1 Pr
y1,...,yn′

[ϑ1 < max{ϑ2,ϑ3}] −
3∑

i=2

ρi Pr
y1,...,yn′

[ϑi = max{ϑ1,ϑ2,ϑ3}]

≤
3∑

i=2

(ρ1 − ρi) Pr
y1,...,yn′

[ϑ1 < ϑi] − ρ1 Pr
y1,...,yn′

[ϑ1 < ϑ2 = ϑ3]

−ρ2 Pr
y1,...,yn′

[ϑ1 = ϑ2 = max(ϑ2,ϑ3)] − ρ3 Pr
y1,...,yn′

[ϑ1 = ϑ3 = max(ϑ2,ϑ3)] .

Proof. We first have, by using Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B],
Pr

y1,...,yn′
[ϑ1 < max(ϑ2,ϑ3)] = Pr

y1,...,yn′
[{ϑ1 < ϑ2} ∪ {ϑ1 < ϑ3}]

= Pr
y1,...,yn′

[ϑ1 < ϑ2] + Pr
y1,...,yn′

[ϑ1 < ϑ3] − Pr
y1,...,yn′

[ϑ1 < ϑ2,ϑ1 < ϑ3] ,

and we further have, based on the law of total probability,

Pr
y1,...,yn′

[ϑ1 < ϑ2,ϑ1 < ϑ3] = Pr
y1,...,yn′

[ϑ1 < ϑ2 < ϑ3] + Pr
y1,...,yn′

[ϑ1 < ϑ3 < ϑ2] + Pr
y1,...,yn′

[ϑ1 < ϑ2 = ϑ3] .

This follows that

Pr
y1,...,yn′

[ϑ1 < max(ϑ2,ϑ3)] ≤ Pr
y1,...,yn′

[ϑ1 < ϑ2] + Pr
y1,...,yn′

[ϑ1 < ϑ3]

− Pr
y1,...,yn′

[ϑ1 < ϑ2 = ϑ3] − Pr
y1,...,yn′

[ϑ1 < ϑ2 < ϑ3] − Pr
y1,...,yn′

[ϑ1 < ϑ3 < ϑ2] . (41)

By using the law of total probability again, we have

Pr
y1,...,yn′

[ϑ2 = max(ϑ1,ϑ2,ϑ3)] = Pr
y1,...,yn′

[ϑ1 ≤ ϑ2 = max(ϑ2,ϑ3)]

= Pr
y1,...,yn′

[ϑ1 = ϑ2 = max(ϑ2,ϑ3)] + Pr
y1,...,yn′

[ϑ1 < ϑ2 = max(ϑ2,ϑ3)]

= Pr
y1,...,yn′

[ϑ1 = ϑ2 = max(ϑ2,ϑ3)] + Pr
y1,...,yn′

[ϑ1 < ϑ2] − Pr
y1,...,yn′

[ϑ1 < ϑ2 < ϑ3] , (42)

and we similarly have
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Pr
y1,...,yn′

[ϑ3 = max(ϑ1,ϑ2,ϑ3)] = Pr
y1,y2,y3

[ϑ1 = ϑ3 = max(ϑ2,ϑ3)] + Pr
y1,...,yn′

[ϑ1 < ϑ3] − Pr
y1,...,yn′

[ϑ1 < ϑ3 < ϑ2] ,

which completes the proof by combining with Eqns. (41)-(42) and ρ1 ≥ max(ρ2, ρ3). �
Lemma 19. For integer l ≥ 4, let ϑ1, ϑ2, · · · , ϑl and ρ1, ρ2, · · · , ρl be defined by Eqn. (3). If ρ1 ≥ max(ρ2, . . . , ρl), then we have

ρ1 Pr
y1,...,yn′

[
ϑ1 < max

j∈[l]\{1}
{ϑi}

]
−

l∑
i=2

ρi Pr
y1,...,yn′

[
ϑi = max

j∈[l]
{ϑ j}

]

≤ (ρ1 − ρl) Pr
y1,...,yn′

[ϑ1 < ϑl] + ρ1 Pr
y1,...,yn′

[
ϑ1 < max

j∈[l−1]\{1}
{ϑi}

]
−

l−1∑
i=2

ρi Pr
y1,...,yn′

[
ϑi = max

j∈[l−1]
{ϑi}

]

+ I1 + I2 − ρ1 Pr
y1,...,yn′

[
ϑ1 < ϑl = max

j∈[l−1]\{1}
{ϑi}

]
− ρl Pr

y1,...,yn′

[
ϑ1 = ϑl = max

j∈[l]\{1}
{ϑi}

]
,

where I1 and I2 are given, respectively, by

I1 =
l−1∑
i=2

ρi Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl)

]
and I2 =

l−1∑
i=3

ρi Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl)

]
.

Proof. By using Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B], we first have

Pr
y1,...,yn′

[
ϑ1 < max

j∈[l]\{1}
{ϑ j}

]
= Pr

y1,...,yn′
[{ϑ1 < max{ϑ2, · · · ,ϑl−1}} ∪ {ϑ1 < ϑl}]

= Pr
y1,...,yn′

[
ϑ1 < max

j∈[l−1]\{1}
{ϑ j}

]
+ Pr

y1,...,yn′
[ϑ1 < ϑl] − Pr

y1,...,yn′

[
ϑ1 < ϑl,ϑ1 < max

j∈[l−1]\{1}
{ϑ j}

]
,

and we also have, based on the law of total probability,

Pr
y1,...,yn′

[
ϑ1 < ϑl,ϑ1 < max

j∈[l−1]\{1}
{ϑ j}

]
= Pr

y1,...,yn′

[
ϑ1 < ϑl = max

j∈[l−1]\{1}
{ϑ j}

]

+ Pr
y1,...,yn′

[
ϑ1 < ϑl < max

j∈[l−1]\{1}
{ϑ j}

]
+ Pr

y1,...,yn′

[
ϑ1 < max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
.

We further bound

Pr
y1,...,yn′

[
ϑ1 < max

j∈[l−1]\{1}
{ϑ j} < ϑl

]

≥ Pr
y1,...,yn′

[
ϑ1 < ϑ2 = max

j∈[l−1]\{1,2}
{ϑ j} < ϑl

]
+

l−1∑
i=2

Pr
y1,...,yn′

[
ϑ1 < ϑi < ϑl,ϑi > max

j∈[l−1]\{1,i}
{ϑ j}

]
,

and this follows that

Pr
y1,...,yn′

[
ϑ1 < max

j∈[l]\{1}
{ϑ j}

]

≤ Pr
y1,...,yn′

[ϑ1 < max(ϑ2, · · · ,ϑl−1)] − Pr
y1,...,yn′

[
ϑ1 < ϑl < max

j∈[l−1]\{1}
{ϑ j}

]

− Pr
y1,...,yn′

[
ϑ1 < ϑ2 = max

j∈[l−1]\{1,2}
{ϑ j} < ϑl

]
− Pr

y1,...,yn′

[
ϑ1 < ϑl = max

j∈[l−1]\{1}
{ϑ j}

]

+ Pr
y1,...,yn′

[ϑ1 < ϑl] −
l−1∑
i=2

Pr
y1,...,yn′

[
ϑ1 < ϑi < ϑl,ϑi > max

j∈[l−1]\{1,i}
(ϑ j)

]
. (43)

For 2 ≤ i ≤ l − 1, we have, by the law of total probability again,

Pr
y1,...,yn′

[ϑi = max(ϑ1,ϑ2, · · · ,ϑl)]

= Pr
y1,...,yn′

[ϑi = max(ϑ1,ϑ2, · · · ,ϑl−1),ϑi ≥ ϑl]

= Pr
y ,...,y ′

[ϑi = max(ϑ1,ϑ2, · · · ,ϑl−1)] − Pr
y ,...,y ′

[
ϑi = max {ϑ j} < ϑl

]
.

1 n 1 n j∈[l−1]
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We further have

Pr
y1,...,yn′

[
ϑi = max

j∈[l−1]
{ϑ j} < ϑl

]

= Pr
y1,...,yn′

[
ϑ1 ≤ ϑi,ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]

= Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
+ Pr

y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]

and

Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]

= Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl

]
+ Pr

y1,...,yn′

[
ϑ1 < ϑi < ϑl,ϑi > max

j∈[l−1]\{1,i}
{ϑ j}

]
.

This follows that

Pr
y1,...,yn′

[ϑi = max(ϑ1, · · · ,ϑl)]

= − Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
− Pr

y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl

]

+ Pr
y1,...,yn′

[ϑi = max(ϑ1, · · · ,ϑl−1)] − Pr
y1,...,yn′

[
ϑ1 < ϑi < ϑl,ϑi > max

j∈[l−1]\{1,i}
{ϑ j}

]
. (44)

We finally have, by the law of total probability again,

Pr
y1,...,yn′

[ϑl = max{ϑ1,ϑ2, · · · ,ϑl}]

= Pr
y1,...,yn′

[ϑ1 < ϑl = max{ϑ2, · · · ,ϑl}] + Pr
y1,...,yn′

[ϑ1 = ϑl = max{ϑ2, · · · ,ϑl}]

= Pr
y1,...,yn′

[ϑ1 < ϑl] − Pr
y1,...,yn′

[
ϑ1 < ϑl < max

j∈[l−1]\{1}
{ϑ j}

]
+ Pr

y1,...,yn′

[
ϑ1 = ϑl = max

j∈[l]\{1}
{ϑ j}

]

which completes the proof by combining with Eqns. (43)-(44), ρ1 ≥ max{ρ2, . . . , ρl} and simple algebraic calculations. �
Proof of Lemma 5. This lemma holds obviously when τ = 3 from Lemma 18, and it suffices to prove the case τ ≥ 4. From 
Lemma 18 again and by setting l = 4, . . . , τ in Lemma 19, we have

ρ1 Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]\{1}
{ϑ j}

]
−

τ∑
i=2

ρi Pr
y1,...,yn′

[
ϑi = max

j∈[τ ]
{ϑ j}

]

≤
τ∑

i=2

(ρ1 − ρi) Pr
y1,...,yn′

[ϑ1 < ϑi] + �1 + �2 − ρ1

τ∑
i=3

Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[i−1]\{1}
{ϑ j}

]

−ρ2 Pr
y1,...,yn′

[ϑ1 = ϑ2 = max{ϑ2,ϑ3}] −
τ∑

i=3

ρi Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[i]\{1}
{ϑ j}

]
, (45)

where �1 and �2 are given, respectively, by,

�1 =
τ∑

l=4

l−1∑
i=2

ρi Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
,

�2 =
τ∑

l=4

l−1∑
i=3

ρi Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl

]
.

It remains to bound �1 and �2. Based on the law of total probability, we have
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Pr
y1,...,yn′

[ϑ1 = ϑ2 = max{ϑ2,ϑ3}]

= Pr
y1,...,yn′

[ϑ1 = ϑ2 = max{ϑ2,ϑ3} < ϑ4] + Pr
y1,...,yn′

[ϑ1 = ϑ2 = max{ϑ2,ϑ3,ϑ4}]

= · · ·
=

τ∑
l=4

Pr
y1,...,yn′

[
ϑ1 = ϑ2 = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
+ Pr

y1,...,yn′

[
ϑ1 = ϑ2 = max

j∈[τ ]
{ϑ j}

]

≥
τ∑

l=4

Pr
y1,...,yn′

[
ϑ1 = ϑ2 = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
, (46)

from Pry1,...,yn′
[
ϑ1 = ϑ2 = max j∈[τ ]{ϑ j}

]≥ 0, and we similarly have, for 3 ≤ i ≤ τ − 1,

Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[i]\{1}
{ϑ j}

]
≥

τ∑
l=i+1

Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]
.

This follows that, by combining with Eqn. (46),

�1 =
τ−1∑
i=2

ρi

τ∑
l=max{4,i+1}

[
ϑ1 = ϑi = max

j∈[l−1]\{1}
{ϑ j} < ϑl

]

≤ ρ2 Pr
y1,...,yn′

[ϑ1 = ϑ2 = max{ϑ2,ϑ3}] +
τ−1∑
i=3

ρi Pr
y1,...,yn′

[
ϑ1 = ϑi = max

j∈[i]\{1}
{ϑ j}

]
. (47)

Based on the law of total probability again, we similarly have, for 3 ≤ i ≤ τ − 1,

Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[i−1]\{1}
{ϑ j}

]
≥

τ∑
l=i+1

Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl

]
,

which yields that

�2 =
τ−1∑
i=3

ρi

τ∑
l=i+1

Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[l−1]\{1,i}
{ϑ j} < ϑl

]
≤

τ−1∑
i=3

ρi Pr
y1,...,yn′

[
ϑ1 < ϑi = max

j∈[i−1]\{1}
{ϑ j}

]
. (48)

We complete the proof by combining with Eqns. (45)-(48) and ρ1 ≥ max(ρ2, . . . , ρτ ). �
6.10. Proof of Lemma 6

For any λ < 0, we have, from the Markov’s inequality

Pr
X1,...,Xn′

⎡
⎣ n′∑

i=1

Xi < 0

⎤
⎦= Pr

X1,...,Xn′

⎡
⎣ n′∑

i=1

λXi > 0

⎤
⎦≤ E X1,...,Xn′

⎡
⎣exp

⎛
⎝ n′∑

i=1

λXi

⎞
⎠
⎤
⎦=

n′∏
i=1

E Xi [exp(λXi)] .

From η+
i = Pr[Xi = +1], η−

i = Pr[X1 = −1] and Pr[Xi = 0] = 1 − η+
i − η−

i , we have

E Xi [exp(λXi)] = (1 − η+
i − η−

i )e0 + η+
i eλ + η−

i e−λ ≤ exp(η+
i (eλ − 1) + η−

i (e−λ − 1)) ,

which yields that, from ρ+ =∑n′
i=1 η+

i /n′ and ρ− =∑n′
i=1 η−

i /n′ ,

n′∏
i=1

E Xi [exp(λXi)] = exp

⎛
⎝ n′∑

i=1

η+
i (eλ − 1) +

n′∑
i=1

η−
i (e−λ − 1)

⎞
⎠= exp

(
n′ρ+(eλ − 1) + n′ρ−(e−λ − 1)

)
.

By setting λ = ln(ρ−/ρ+)/2 < 0, we have

(ρ+ − ρ−) Pr
X1,...,Xn′

⎡
⎣ n′∑

i=1

Xi < 0

⎤
⎦≤ (ρ+ − ρ−)exp

(
−n′ (√ρ+ −√

ρ−
)2
)

≤ (ρ+ − ρ−)exp
(
−n′ (ρ+ − ρ−)2

/2
)

,

where we use (
√

ρ+ + √
ρ−)2 ≤ 2 from ρ+, ρ− ∈ [0, 1] and ρ+ + ρ− ≤ 1. We finally complete the proof by using 

maxt≥0{te−n′t2/2} = 1/
√

en′ . �

26



W. Gao, F. Xu and Z.-H. Zhou Artificial Intelligence 313 (2022) 103788
6.11. Proof of Lemma 7

This lemma holds obviously when Pr[x ∈ Ci] = 0, and it suffices to consider Pr[x ∈ Ci] > 0. We introduce the random 
events

�1 = {|Ci ∩ Sn| ≥ n Pr[x ∈ Ci]/2} and �2 = {|Ci ∩ Sn| < n Pr[x ∈ Ci]/2} .

Based on the law of total probability, we have

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]
= Pr

Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[�1] + Pr

Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�2

]
Pr[�2] .

It follows that, from Lemma 13,

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci

]
Pr[x ∈ Ci] ≤ Pr

Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[x ∈ Ci]Pr[�1] + 3/n . (49)

To bound PrSn,(x,y)

[
f�,Sn (x) = y|x ∈ Ci,�1

]
, we introduce the set Si

n of training examples falling into the cell Ci , i.e., 
Si

n = {(x j, y j) : (x j, y j) ∈ Sn and x j ∈ Ci}. Under the condition �1, we have

n′ := |Si
n| = |Sn ∩ Ci| ≥ n Pr[Ci]/2 . (50)

Without loss of generality, we denote by Si
n = {(x1, y1), (x2, y2), . . . , (xn′ , yn′)}. For any instance x ∈ Ci , the predicted label 

by random forests can be given by

f�,Sn(x) = arg max
l∈[τ ]

⎧⎨
⎩

n′∑
j=1

I[y j = l]
⎫⎬
⎭ .

Conditioned on x, x1, x2, . . . , xn′ , it is easy to observe that ηl(x) = Pr[y = l|x] for l ∈ [τ ], and ηl(x j) = Pr[y j = l|x j] for j ∈ [n′]
and l ∈ [τ ]. Write ρl =∑n′

j=1 ηl(x j)/n′ for l ∈ [τ ], and we have ρ1 + ρ2 + · · · + ρτ = 1 and

|ρl − ηl(x)| = 1

n′
n′∑

j=1

|ηl(x j) − ηl(x)| ≤ L‖x j − x‖ ≤ Lν(Ci) for l ∈ [τ ] . (51)

For simplicity, we denote by

ϑl =
n′∑

j=1

I[y j = l] for l ∈ [τ ] ,

and thus f�,Sn (x) = arg maxl∈[τ ]{ϑl}. In the following, we assume ρ1 = max{ρ1, ρ2, · · · , ρτ } without loss of generality, and 
make similar considerations for ρl = max{ρ1, ρ2, · · · , ρτ } as l ≥ 2. This follows that

Pr
y1,...,yn′ ,y

[
f�,Sn(x) = y|x, x1, . . . , xn′

]

=
τ∑

l=1

ηl(x) Pr
y1,...,yn′

[ϑl < max(ϑ1,ϑ2, · · · ,ϑτ )]

= 1 − η1(x) + η1(x) Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]
{ϑ j}

]
−

τ∑
l=2

ηl(x) Pr
y1,...,yn′

[
ϑl = max

j∈[τ ]
{ϑ j}

]
(52)

where the last equality holds from η1(x) + η2(x) + · · · + ητ (x) = 1. Let ηl∗(x) = maxl∈[τ ]{ηl(x)}. Then, we have

1 − η1(x) = min
l∈[τ ]

{1 − ηl(x)} + ηl∗(x) − η1(x)

= min
l∈[τ ]

{1 − ηl(x)} + (ηl∗(x) − ρl∗) + (ρl∗ − ρ1) + (ρ1 − η1(x))

≤ min
l∈[τ ]

{1 − ηl(x)} + |ηl∗(x) − ρl∗ | + |η1(x) − ρ1|
≤ min{1 − ηl(x)} + 2Lν(Ci) (53)
l∈[τ ]
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where the first and second inequalities hold from ρ1 = max{ρ1, ρ2, · · · , ρτ } ≥ ρi∗ and Eqn. (51), respectively. We also have

η1(x) Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]
{ϑ j}

]
−

τ∑
l=2

ηl(x) Pr
y1,...,yn′

[
ϑl = max

j∈[τ ]
{ϑ j}

]

≤
τ∑

l=1

‖ηl(x) − ρl‖ + ρ1 Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]
{ϑ j}

]
−

τ∑
l=2

ρl Pr
y1,...,yn′

[
ϑl = max

j∈[τ ]
{ϑ j}

]

≤ τ Lν(Ci) +
τ∑

l=2

(ρ1 − ρl) Pr
y1,...,yn′

[ϑ1 < ϑl] (54)

where the last inequality holds from Eqn. (51) and Lemma 5. This follows that, from Lemma 6,

η1(x) Pr
y1,...,yn′

[
ϑ1 < max

j∈[τ ]
{ϑ j}

]
−

τ∑
l=2

ηl(x) Pr
y1,...,yn′

[
ϑl = max

j∈[τ ]
{ϑ j}

]
≤ τ Lν(Ci) + τ√

en′ .

Hence, we have, from Eqn. (50)

Pr
Sn,(x,y)

[
f�,Sn(x) = y|x ∈ Ci,�1

]
Pr[Ci]Pr[�1]

≤ Ex

[
min
l∈[τ ]

{1 − ηl(x)}|x ∈ Ci

]
Pr[Ci] + (τ + 2)Lν(Ci)Pr[Ci] + τ

√
2 Pr[Ci]/en ,

which completes the proof by combining with Eqn. (49). �
6.12. Proofs of Theorems 5-8

It is observable that the proof of Theorem 8 is exactly the same as that of Theorem 4, and we will present the detailed 
proofs for Theorems 5-7.

Proof of Theorem 5. We follow the proof of Theorem 1 and utilize Lemma 7 for multi-class learning. We first have

RD( f Sn,�) ≤ Ex∼DX [I[x ∈ ]] + Ex∼DX

[
Pr

y∼M(η1(x),...,ητ (x))
[ f�,Sn(x) = y]I[x /∈ ]

]
(55)

where  = {x ∈ X : ν(C(x)) ≥ (1 + ε)
√

d/k1/8d}. Notice that C1, C2, . . . , Ck is a partition of the instance space X from the 
construction of random tree. By the law of total probability, we have

Ex∼DX

[
Pr

y∼M(η1(x),...,ητ (x))
[ f�,Sn(x) = y]I[x /∈ ]

]
=

k∑
i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci � ] ,

where we use C(x) = Ci for every x ∈ Ci . From Eqn. (55), we have

E Sn,�

[
RD( f Sn,�)

]≤ Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]

+E�

[
k∑

i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � ]
]

. (56)

From Lemma 3, we have

Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/8d

]]
≤ ed

(1 + ε)k1/8d
. (57)

From Lemma 7 and the definition of set , we can bound Eqn. (56) as follows

k∑
i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � ] ≤ R∗
D + (τ + 2)(1 + ε)L

√
d

k1/8d
+

k∑
i=1

τ

√
2 Pr[Ci]

en
+ 3k

n
, (58)

where we use the law of total expectation and R∗
D = Ex∼DX [min j∈[τ ]{1 − η j(x)}]. By Jensen’s inequality, we have ∑k

i=1
√

Pr[Ci] ≤ √
k, and this follows that, from Eqns. (56)-(58),
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E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + ed

(1 + ε)k1/8d
+ (τ + 2)(1 + ε)L

√
d

k1/8d
+ τ

√
2k

en
+ 3k

n
.

We complete the proof by setting ε =
√

e
√

d/(τ + 2)L −1 and combining with Lemma 1 and simple algebra calculations. �
Proof of Theorem 6. We follow the proof of Theorem 2 and utilize Lemma 7 for multi-class learning. We first have

RD( f Sn,�) ≤ Ex∼DX [I[x ∈ ]] + Ex∼DX

[
Pr

y∼M(η1(x),...,ητ (x))
[ f�,Sn(x) = y|x]I[x /∈ ]

]
(59)

with  = {x ∈X : ν(C(x)) ≥ (1 + ε)
√

d/k1/4d}. Notice that C1, C2, . . . , Ck is a partition of the instance space X , and we have

Ex∼DX

[
Pr

y∼M(η1(x),...,ητ (x))
[ f�,Sn(x) = y]I[x /∈ ]

]
=

k∑
i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci � ] .

This follows that, from (59),

E Sn,�

[
RD( f Sn,�)

]≤ Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]]

+ E�

[
k∑

i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci �]
]

. (60)

From Lemma 16, we have

Ex∼DX

[
Pr

Sn,�

[
ν[C(x)] ≥ (1 + ε)

√
d/k1/4d

]]
≤ 3d/2

(1 + ε)3/2k1/3.6846d
. (61)

From Lemma 7 and the definition of , we can upper bound Eqn. (60) by

k∑
i=1

E Sn [Pr[ f�,Sn(x) = y|x ∈ Ci]]Pr[x ∈ Ci]I[Ci � 2] ≤ R∗
D + (τ + 2)(1 + ε)L

√
d

k1/4d
+ τ

√
2k

en
+ 3k

n
.

This follows that, from Eqns. (60)-(61),

E Sn,�

[
RD( f Sn,�)

]≤ R∗
D + 3d/2

(1 + ε)3/2k1/3.6846d
+ (τ + 2)(1 + ε)L

√
d

k1/4d
+ τ

√
2k

en
+ 3k

n
.

We complete the proof by setting ε =
(

9
√

dk
1

4d − 1
3.6848d /4(τ + 2)L

)2/5 − 1 and combining with Lemma 1 and some simple

algebraic calculations. �
Proof of Theorem 7. We follow the proof of Theorem 3 and utilize Lemma 7 for multi-class learning. Let C1, C2, . . . , Ck be 
a partition of instance space X , which are associated with k leaves of random tree. Based on the law of total probability, 
we have

RD( f Sn,�) =
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci ∈ ] (62)

+
k∑

i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci /∈ ] , (63)

where  = {Ci : all training examples in Ci have the same label}.
We first study the case Ci ∈  (i ∈ [k]), and it holds that have, for κ ≥ 2,

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[ f�,Sn(x) = y

∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] .

From Ci ∈ , all training examples in Ci have the same label, and assume that the labels of training examples in Ci are all 1 
without loss of generality. We have f�,Sn (x) = 1 for all x ∈ Ci . Let η̄1(Ci) = E[η1(x)|x ∈ Ci] denote the expected conditional 
probability over cell Ci . If η̄1(Ci) ≥ 1 − ε , then we have
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Table 1
Benchmark datasets.

datasets # instance # feature # label datasets # instance # feature # label

obesity 2,111 16 7 drybean 13,611 16 7

shill 6,321 9 2 eggeye 14,980 14 2

mfcc 7,195 22 4 magic04 19,020 10 2

firmteacher 10,800 16 4 letter 20,000 16 26

mapping 10,845 28 6 occupancy 20,560 5 3

pendigits 10,992 16 10 firewall 65,532 11 4

Pr[ f�,Sn(x) = y
∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] ≤ ε ;

and if η̄1(Ci) < 1 − ε and Ci ∈ , then we have

Pr[ f�,Sn(x) = y
∣∣|Ci ∩ Sn| > κ, x ∈ Ci]Pr[|Ci ∩ Sn| > κ, x ∈ Ci] ≤ Pr[|Ci ∩ Sn| > κ] ≤ exp(−κε) .

This follows that, for Ci ∈ ,

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[Ci](ε + exp(−κε)) .

By setting ε = (lnκ)/κ , we have

Pr[Ci]Pr
[

f�,Sn(x) = y
∣∣∣x ∈ Ci

]
≤ Pr[Ci]Pr[|Ci ∩ Sn| ≤ κ] + Pr[Ci]1 + lnκ

κ
.

Combining with Lemma 17, we can upper bound the Eqn. (62) as follows:

k∑
i=1

Pr[ f�,Sn(x) = y|x ∈ Ci]Pr[x ∈ Ci]I[Ci ∈ ] ≤ kκ

n

(
1 +

√
2

κ

)
+ 1 + lnκ

κ
. (64)

We now consider the case Ci /∈ , i.e., the instances in Ci have different labels. It is easy to get the height h(Ci) ≥
log2 k − 2 and the splitting times for each dimension are more than (log2 k − 2)/d − 1 from the construction of random tree 
in Algorithm 1. Hence, we upper bound the diameter of rectangle cell Ci as follows:

ν(Ci) ≤ √
d

(
1

2

)(log2 k−2)/d−1

= 21+2/d
√

d

k1/d
≤ 8

√
d

k1/d
.

This follows that, from Lemma 7 and Eqns. (62)-(64),

E Sn,�[RD( f Sn,�)]

≤ R∗
D + kκ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) + 8(τ + 2)L

√
d

k1/d
+ 3k

n
+ τ

k∑
i=1

√
2 Pr[Ci]

en

≤ R∗
D + kκ

n

(
1 +

√
2

κ

)
+ 1

κ
(1 + lnκ) + 8(τ + 2)L

√
d

k1/d
+ 3k

n
+ τ

√
2k

en
.

We have, by setting κ =
⌈√

n ln n/k
⌉

with algebra calculations,

E Sn,�

[
RD( f Sn,�)

]

≤ R∗
D +

√
k lnn

n
+ 4

√
4k3 ln n

n3
+
√

k

n lnn

(
1 + 1

2
ln

n lnn

k

)
+ 6k

n
+ τ

√
2k

en
+ 8(τ + 2)L

√
d

k1/d

≤ R∗
D + 2

√
k lnn

n
+ 4

√
4k3 ln n

n3
+ 6k

n
+
(
τ

√
2

e
+ 1

)√
k

n
+ 8(τ + 2)L

√
d

k1/d
(n ≥ 4,k ≥ 2) ,

which completes the proof by combining with Lemma 1. �
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Fig. 1. The convergence curves of four random forests (PRFs, RFs, PRFsM and SRFs) on benchmark datasets.

7. Experiments

This section tries to present empirical studies to support our theoretical analysis. We conduct experiments on twelve 
benchmark datasets,1 and the details are summarized in Table 1. Most datasets have been used in previous studies of 
random forests, and the features have been scaled to [0, 1] for all datasets.

We compare with four random forests, which have been studied theoretically in this work.

• PRFs: Purely random forests [11];
• RFs: Breiman’s original random forests [12];
• PRFsM: Purely random forests with midpoint splits as shown in Section 3;
• SRFs: The simplified variant of Breiman’s original random forests as shown in Section 4.

All experiments are performed with Python 3 on an Intel Core i9-10900X processor under Ubuntu 20.04 with 128GB 
RAM. For each datasets, five-fold cross-validation is executed to select the parameters of random trees, that is, number 
of random trees m ∈ {10, 20, · · · , 200} for ensemble and leaves number k ∈ {500, 1000, · · · , 10000}. For Breiman’s original 
random forests, we adopt the Gini index as the splitting criterion and randomly select 	√d
 candidate features for splitting.

1 https://archive .ics .uci .edu /ml /datasets .php.
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Fig. 2. The influence of number of randomized trees on four random forests: PRFs, RFs, PRFsM and SRFs.

We take the test error as our performance measure for classification, which could directly support our theoretical results 
on the convergence rates of different random forests to Bayes’ risk. This is different from random forests regression, which 
generally takes mean squared error (MSE) as performance measure. For all datasets, we take five trials of 5-fold cross 
validation, and the final test error is obtained by averaging over these 25 runs. We perform the log-log plots of test error 
versus number of instances for all datasets, as shown in Fig. 1, which could make more clear empirical comparisons for 
different random forests on their convergence rates.

As can be seen from Fig. 1, purely random forests (PRFs) show the slowest convergence curves for all datasets, which are 
in coordination with Theorems 1 and 5 of the lowest convergence rates. In contrast, purely random forests with mid-point 
split (PRFsM) take faster convergence than purely random forest empirically, which well supports our theoretical results 
(Theorems 2 and 6). The simplified variant of Breiman’s random forests (SRFs) take faster convergence curves than PRFs and 
PRFsM, because Theorems 3 and 7 show faster convergence rates theoretically.

It is also observable that, from Fig. 1, Breiman’s original random forests (RFs) take the fastest convergence curves for 
all datasets, and an intuitive explanation is that random forests correlate the randomization process with data-dependent 
tree structure based on the gini index criterion. However, theoretical understanding remains big challenges from a technical 
view, and we leave it for future work.

We further exploit the influence of number of randomized trees (in voting) on the convergence of different random 
forests, and Fig. 2 presents the log-log plots of test error versus number of randomized trees for all datasets. As we can see, 
four different random forests (PRFs, RFs, PRFsM and SRFs) achieve relatively stable performance for all datasets when we 
take more than 100 randomized trees (in voting). This evidence empirically supports Lemma 1 on the convergence rate of 
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random forests from the average of randomized trees, and it is also in accordance with previous empirical studies on the 
selection of 100 randomized trees in experiments for random forests [12,29,41,50].

8. Conclusion

Random forests have been recognized as one of the successful algorithms for classification and regression, and most 
previous studies focus on the convergence analysis of random forests for regression. This work takes one step towards the 
convergence analysis of random forests for classification. Specifically, we present the finite-sample convergence rates of 
purely random forests, as well as the simplified variant of Breiman’s original random forests. We also achieve the same 
convergence rates of random forests for multi-class learning as that of binary classification, yet with different constants. It is 
still a long way to fully understand random forests with relevant mechanisms such as bootstrap sampling, data-dependence 
tree structure, tree pruning, etc., and we leave those to future work.
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