
Towards Enabling Learnware to Handle Unseen Jobs∗

Yu-Jie Zhang, Yu-Hu Yan, Peng Zhao, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China
{zhangyj, yanyh, zhaop, zhouzh}@lamda.nju.edu.cn

Abstract

The learnware (Zhou 2016) paradigm attempts to change the
current style of machine learning deployment, i.e., user builds
her own machine learning application almost from scratch,
to a style where the previous efforts of other users can be
reused, given a publicly available pool of machine learning
models constructed by previous users for various tasks. Each
learnware is a high-quality pre-trained model associated with
its specification. Although there are many models in the learn-
ware market, only a few, even none, may be potentially helpful
for the current job. Therefore, how to identify and deploy
useful models becomes one of the main concerns, which par-
ticularly matters when the user’s job involves certain unseen
parts not covered by the current learnware market. It becomes
more challenging because, due to the privacy consideration,
the raw data used for training models in the learnware market
are inaccessible. In this paper, we develop a novel scheme
that works can effectively reuse the learnwares even when
the user’s job involves unseen parts. Despite the raw training
data are inaccessible, our approach can provably identify sam-
ples from the unseen parts while assigning the rest to proper
models in the market for predicting under a certain condition.
Empirical studies also validate the efficacy of our approach.

1 Introduction
Nowadays, machine learning models have shown impressive
power in handling various jobs. However, when training a
well-performed model, numerous data, fast machines, and
expertise are always required, making it quite struggling to
learn from scratch. The expensive cost has been a burden
for users who hope to deploy learning models in their jobs.
As there have already been vast well-performed models de-
veloped by different individuals, a natural question arises:
Is it possible to build a model sharing platform, following a
protocol to help the user benefit from existing models?

Zhou (2016) considers running a learnware market shown
as Figure 1. A learnware is a high-quality model associated
with its specification served as an explanation or specialty for
the model. There are two parts of participants in the market.
The first is the developers, who could individually access
the raw data for various learning jobs. Based on the local
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Figure 1: The learnware framework

data, a develop can build a learnware and upload it to the
market for sharing. The second part of participants is the
users who hope to reuse the uploaded learnwares. When
dealing with her own job, a user can search over the market,
identify useful learnwares whose specifications matches the
requirements, and then use her data to adapt/polish these
learnwares for her job. The main focus here is how to design
an effective protocol between developers and users, guiding
the development and deployment of learnwares. The desired
learnware should satisfy several properties (Zhou 2016).

Reusability is one of the core requirements concerning
which and how the pre-trained models in the market can be
reused. Although there are various models, the potentially
useful ones could be few, even non-existent. Thus, it is im-
portant to identify which models are helpful for the user’s
current job. Meanwhile, as we cannot expect that there exists
a model trained exactly for the current job, the identified mod-
els could only be partially helpful. Even worse, the current
job might contain an unseen part, which is intractable to all
existing models. Thus, how to fully exploit reusable models
while leaving the intractable parts for post-processing is also
a crucial problem. In addition, we hope the raw data are inac-
cessible to the user, which ensures developers can share their
experience safely and avoid data privacy violations.

In this paper, we consider the reusability of learnware in
the scenario where the user hopes to exploit the market to
predict her current job directly. This problem is of interest



when the user’s training data are too scarce to support model
training. Meanwhile, suppose the user has a label budget. In
that case, the scheme can also be served as a preprocessing for
identifying tractable samples while leaving the rest for label
annotation, where the labeling efficiency can be improved.

It is challenging to ensure reusability and inaccessibility
of raw data simultaneously, as the pre-trained model itself
might not be informative enough to support reusability while
raw data are inaccessible. The pioneering work (Wu et al.
2020) attempts to reuse models via their proposed reduced
kernel mean embedding (RKME) specification. This method
works effectively when the user’s job covered well by the
learnware market, whereas it remains a challenge to handle
scenarios where the user’s job involves unseen parts, which
often occurs particularly when the learnware market is still
in developing. In this paper, we designs a novel deploying
approach to reuse models with RKME specification. Our
method can provably identify samples from unseen parts of
the current job and assign the rest to proper usable models,
which provides answers to the “which” and “how” problems.

To facilitate an effective approach, we integrate several
techniques from weakly supervised learning (Zhou 2018)
with the RKME specification. Specifically, by tailoring the
mixture proportion estimation technique (Ramaswamy, Scott,
and Tewari 2016), we answer the problem of “which” by
estimating the proportion of each uploaded job and the un-
seen part in the current job. Then, with the ratios, the risk
rewriting technique (du Plessis, Niu, and Sugiyama 2014;
Zhang et al. 2020) is used to train a job selector, which can
directly identify samples from the unseen part and assign
the rest to proper models. This addresses the “how” problem.
Our method is theoretically supported by the convergence
analysis of the mixture proportion estimator and generaliza-
tion error analysis for the job selector. We also validate the
effectiveness of our proposal by extensive experiments.

2 Preliminary
This section reviews the RKME specification, and related
techniques, including KME and reduced set construction.
Kernel Mean Embedding. KME (Smola et al. 2007) makes
a powerful representation for a probability distribution. The
idea is to map a probability distribution to a reproducing ker-
nel Hilbert space (RKHS), by representing each distribution
P defined over X as a mean function

µP :=

∫
X
k(x, ·) dP (x),

where k : X × X → R is a symmetric and positive definite
kernel function (Schölkopf and Smola 2002), with associated
RKHSH and feature map φ : X → H. The embedding µP
exists and belongs toH, when Ex∼P [

√
k(x,x)] <∞.

KME enjoys several favorable properties and is potentially
a nice choice for the specification. First of all, KME makes
a good representation of the distribution, as it can capture
all information about the distribution when using the charac-
teristic kernels such as the Gaussian kernel (Sriperumbudur,
Fukumizu, and Lanckriet 2011). Meanwhile, several elemen-
tary operations on distribution can be easily performed with

KME. For example, we can calculate the mean of any func-
tion f ∈ H over distribution P directly by the reproducing
property, i.e., EP [f(x)] = 〈f, µP 〉 for all f ∈ H. These ex-
cellent properties encourage KME’s applications in various
distribution related tasks (Gretton et al. 2012; Muandet and
Schölkopf 2013; Doran 2013). For more about KME, we
refer readers to the fantastic survey (Muandet et al. 2017).

In practice, we can only observe a dataset D = {xn}Nn=1
sampled i.i.d. from the underlying distribution P . Thus, the
empirical KME µ̂P is calculated on the dataset to approxi-
mate the expected version µP as

µ̂P =
1

N

∑N

n=1
k(xn, ·).

As shown by Smola et al. (2007), the empirical KME µ̂P
converges to µP in the rate of O(1/

√
N) measured by the

RKHS norm ‖ · ‖H under mild conditions.
Reduced Kernel Mean Embedding. Although enjoying
several nice properties, KME requires accessing to raw data,
which violates the inaccessibility of learnware and is not a
valid specification. To address this issue, Wu et al. (2020)
introduce the reduced KME to approximated the original
KME via the reduced set method. This method is first used to
speed up SVM prediction (Burges 1996) and receives more
comprehensive studies in Schölkopf et al. (1999).

The idea of RKME is to find a reduced set {(βm, zm)}Mm=1

whose KME µ̃P =
∑M
m=1 βmk(zm, ·) approximates that of

the original data {xn}Nn=1. This is achieved by solving

min
β,z

∥∥∥∥ 1

N

∑N

n=1
k(xn, ·)−

∑M

m=1
βmk(zm, ·)

∥∥∥∥2

H
, (1)

where βm ∈ R is the coefficient and zm ∈ X is the sample of
the reduced set. The above problem is known as the reduced
set construction (Schölkopf et al. 1999), when zi is a newly
constructed sample. Several methods can be used for handling
the above problem. We defer descriptions in Appendix A.

RKME µ̃P enjoys a linear convergence rate O(e−M ) to
empirical KME µ̂P when H is finite-dimensional (Bach,
Lacoste-Julien, and Obozinski 2012), which makes it a good
approximation of the distribution. Meanwhile, thanks to the
reduced set construction, raw data are inaccessible to users.
Thus, RKME is an effective specification.

3 Problem Setup
This section introduces the problem setup and notations. We
denote joint, conditional, and marginal distributions by sub-
scripts XY , X|Y , and X throughout the paper. The learn-
ware protocol contains uploading and deploying stages.
Uploading Stage. In this stage, developers should upload
well-performed models with RKMEs for their jobs.

Specifically, suppose there are C developers in the upload-
ing stage. The i-th developer can access to a local dataset
Di = {(xn, yn)}Ni

n=1 sampled from DiXY , which is the joint
distribution of the i-th job defined over Xi × Yi.

Based on dataset Di, the developer can train a high-quality
model fi : Xi → Yi, which performs well over DiXY . Be-
sides, a RKME µ̃i =

∑Mi

m=1 βm · k(zm, ·) is constructed to



approximate the empirical KME µ̂i = 1/Ni ·
∑Ni

n=1 k(xn, ·)
by minimizing (1). The RKME specification µ̃i makes a good
approximation for the feature distributionDiX without access-
ing the raw data. Afterward, she can upload the learnware
pair (fi, µ̃i) to the market. For simplicity, we assume the
same feature space for all jobs, i.e., Xi = X for all i ∈ [C].
Deploying Stage. In this stage, the user hopes to exploit
learnwares {(fi, µ̃i)}Ci=1 in the market to handle her own job.
Specifically, we consider the scenario where the user hopes
to obtain a classifier f to predict her dataset Dte = {xn}Nt

n=1,
whose labels are unknown but sampled from the distribution
DteXY defined over X × Y . It is almost impossible to handle
this problem without any assumption since the distribution
DteXY can be arbitrarily different from those of uploaded jobs.
Recently, Wu et al. (2020) introduce the instance-recurrent
assumption which assumes the user’s job is well covered by
the learnware market and DteX to be a mixture of DiX , i.e.,

DteXY =
∑C

i=1
wi · DiXY , (2)

where w ∈ ∆C . It remains challenging to consider the exis-
tence of unseen parts in the user’s job, which often happens
particularly when the market is still in developing.

In this paper, we generalize the previous assumption (2) by
further considering the unseen parts in the user’s job, which
are not covered by the market and have the distribution Du

XY
over X × Yu. Since the user’s data provide no supervision,
Yu is assumed to have a unique class as Yu = {u}. We refer
unseen parts of the user’s job as an unseen job and introduce
the following unseen-job assumption.
Assumption 1 (unseen-job assumption). The distribution of
the user’s job DteXY is a mixture of those of uploaded jobs
DiXY and the unseen job Du

XY as

DteXY =
∑C

i=1
wiDiXY + wuDu

XY , (3)

where
∑C
i=1 wi + wu = 1, wi, wu ≥ 0 for all i ∈ [C].

Assumption 1 is a natural generalization of the instance-
recurrent assumption of Wu et al. (2020), since (3) recov-
ers (2) when wu = 0. Due to the existence of the unseen job,
our problem becomes much harder to solve and requires a
new deploying approach. We discuss potential directions that
can further generalize Assumption 1 in Appendix A.

4 Our Approach
This section describes our approach. The idea is to train
a selector to recognize which job a user’s testing sample
comes from. With a well-performed job selector, we can
identify intractable samples belonging to the unseen job while
assigning the rest to proper uploaded models for predicting,
which can thereby address the problems of “which”, and
“how” proposed in Section 1. The challenge is how to train
the selector when the unseen job could exist and raw data of
uploaded jobs are inaccessible.

4.1 Desired Job Selector
To train the job selector, we take each job as a superclass,
whose label is denoted by i for the i-th job and u for the

unseen job. Thus, the selector is essentially a multiclass clas-
sifier g(x) : X → I with I = {1, . . . , C, u}. Given a test-
ing sample x, when g(x) ∈ [C], the user can predict it as
f(x) = fg(x)(x) with the g(x)-th uploaded model, other-
wise predict that it comes from the unseen job as f(x) = u.
We show that the generalization error of the decision function
f is highly related to the quality of the job selector.
Proposition 1. Under Assumption 1, suppose all uploaded
models {fi}Ci=1 perform well over their jobs such that
EDi

XY
[1(fi(x) 6= y)] ≤ ε holds for all i ∈ [C]. The gen-

eralization error of the prediction function f is bounded by

EDte
XY

[L01(f(x), y)] ≤ ε+R(g), (4)

where L01(f(x), y) = 1[f(x) 6= y] and 1[·] is the indicator
function. The risk of job selector R(g) is defined by∑C

i=1
wiEDi

X
[L01(g(x), i)] + wuEDu

X
[L01(g(x),u)] (5)

Proposition 1 implies that once the selector g minimizes
R(g), we can obtain a high-quality decision function by ex-
ploiting the uploaded models. We note that minimizing (5)
is the key to address the “which” and “how” problems, as
the mixture proportions {wi}Ci=1 indicate which models are
useful and the selector tells how to use them. Unfortunately,
the 0-1 loss L01 is non-convex, which makes the risk mini-
mization problem generally intractable.

The common practice to handle this problem is to use a
convex surrogate loss function to substitute the 0-1 loss. In
the multiclass scenario, instead of training a single classifier g
directly, we usually train multiple binary classifiers gi : X →
R for each i ∈ I to distinguish the i-th class from others,
and then predict as g(x) = arg maxi∈I gi(x). Denoting by
g(x) = [g1(x), . . . , gC(x), gu(x)] the vector function, we
can train the binary classifiers by minimizing the expected
risk RΨ(g) w.r.t. a convex surrogate loss defined by∑C

i=1
wiEDi

X
[LΨ(g(x), i)] + wuEDu

X
[LΨ(g(x),u)] (6)

There are multiple choices for the multiclass surrogate loss
LΨ : RC+2 → R (Zhang 2004), such as the one-versus-rest
(OVR) and pairwise comparison (PC) losses. The consistency
between functions minimizing RΨ(g) and that minimizing
RΨ(g) is also studied in the seminal work of Zhang (2004).

To minimize the expected risk RΨ(g), it requires knowing
DiX , Du

X , {wi}Ci=1 and wu. The feature distribution DiX can
be approximated directly by the RKMEs µ̃i. However, the
estimation of Du

X is challenging since the unseen job has
never been uploaded in the learnware market. In the next
part, we present the method to minimize RΨ with only the
RKMEs {µ̃i}Ci=1 and user’s testing data, assuming that the
mixture proportions {wi}Ci=1, wu were known, for a moment.

4.2 Expected Risk Rewriting
One of the main challenges to minimize RΨ(g) is that the
learnware market cannot provide any information about the
marginal distribution of unseen job Du

X . We handle this prob-
lem by using the risk rewriting technique (du Plessis, Niu,
and Sugiyama 2014; Zhang et al. 2020) with the user’s un-
labeled data. The intuition is that though the unseen job is



never uploaded, its marginal distribution Du
X is hidden in the

user’s testing data. Under Assumption 1, summing over the
label set, we can estimate Du

X by separating the distributions
of uploaded job from that of the unlabeled data as

Du
X =

(
DteX −

∑C

i=1
wiDiX

)
/wu. (7)

Rewriting (6) with (7), we have the following proposition.

Proposition 2. Under Assumption 1, for all measurable func-
tion gi : X → R with i ∈ I, we have

RΨ(g) =
∑C

i=1
wiEDi

X
[LΨ(g(x), i)− LΨ(g(x),u)]

+ EDte
X

[LΨ(g(x),u)]. (8)

Proposition 2 show that RΨ(g) is only established on the
distribution of uploaded jobs DiX and that of the user’s data
DteX . Thus, we can train the selector by minimizing its empir-
ical version R̂Ψ(g), where the distributions DiX and DteX are
approximated with their empirical observations Di and Dte.

However, raw data Di are inaccessible and the only avail-
able resource is the associated RKME. To address this prob-
lem, we employ the kernel herding technique (Chen, Welling,
and Smola 2010; Bach, Lacoste-Julien, and Obozinski 2012)
to sample a mimic dataset D̃i = {xi}Ñi

n=1 from the RKME
µ̃i to substitute Di, where the empirical risk R̂Ψ(g) becomes

R̂Ψ(g) =
∑C

i=1

wi

Ñi

∑
xn∈D̃i

(LΨ(g(xn), i)− LΨ(g(xn),u))

+
1

Nt

∑
xn∈Dte

Lψ(g(xn),u). (9)

In Section 5, we theoretically justify that D̃i provides a suffi-
cient approximation for training the selector.

The last issue is that R̂Ψ(g) is generally non-convex, mak-
ing it hard to optimize. We can eliminate the non-convexity
by choosing proper multi-class surrogate losses LΨ and inner
binary losses ψ. In this paper, We use the OVR loss

LOVR
Ψ (g(x), i) = ψ(gi(x)) +

∑
j 6=i

ψ(−gj(x)),

with the convex binary loss ψ : R → R satisfying ψ(z) −
ψ(−z) = −z, for all z ∈ R (du Plessis, Niu, and Sugiyama
2015).1 In such a case, R̂Ψ(g) is convex w.r.t. g and can be
optimized efficiently. Practically, we train the selector by

g̃ = arg ming1,...,gC ,gu∈G R̂Ψ(g) (10)

where G = {g ∈ H | ‖g‖H ≤ BG} is a RKHS-based hy-
pothesis set. We present more descriptions for kernel herding
and the convex formulation of R̂Ψ(g) in Appendix A.

1Many loss functions satisfy the condition, such as logistic loss
ψ(z) = log(1 + exp(−z)), square loss ψ(z) = (1 − z)2/4 and
double hinge loss ψ(z) = max(−z,max(0, (1− z)/2))

4.3 Mixture Proportion Estimation with RKME
This part shows how to estimate {wi}Ci=1 and {wu} with
RKMEs and user’s unlabeled data.
No Unseen Job. The problem is straightforward suppose we
knew there is no unseen job. By summing (2) over the label
set Y , we have DteX =

∑C
i=1 wiDiX . Since the RKME µ̃i is a

good approximation of the marginal distribution DiX , we use
the relationship among KMEs to solve {wi}Ci=1 by

min
w∈∆

∥∥∥∥∑C

i=1
wiµ̃i − µ̂te

∥∥∥∥2

H
, (11)

where w = [w1, · · · , wC ]T and ∆C is the probability sim-
plex. Notation µ̂te = 1/Nt ·

∑Nt

n=1 k(xn, ·) is the empirical
KME of the testing data. Note that (11) can be solved by a
quadratic program (Smola et al. 2007).

The above method is infeasible in our setting due to the un-
seen job’s absence. Our idea is to estimate individual mixture
proportion wi and then calculate wu = 1−

∑C
i=1 wi.

MPE Problem. The estimation of individual wi can be cast
as a mixture proportion estimation (MPE) problem (Blan-
chard, Lee, and Scott 2010; Jain et al. 2016; du Plessis, Niu,
and Sugiyama 2017). In the MPE problem, the user observes
two datasets, DF = {xn}

Nf

n=1 sampled i.i.d. from distribu-
tion F and DH = {xn}Nh

n=1 sampled i.i.d from H , where
F = wH + (1− w)G is a mixture of H and an unobserved
distribution G with proportion w ∈ [0, 1]. The goal of the
user is to estimate w with the empirical data DF and DH .

Clearly, in our scenario, we can take F = DteX and
H = DiX , and use Dte and Di to estimate wi with developed
estimators. Nevertheless, the raw training data Di are inac-
cessible, which limits the application of most existing MPE
estimators as they always require the raw data. To handle this
problem, we tailor the KME based estimator (Ramaswamy,
Scott, and Tewari 2016) to fit the RKME specification.
Expected KME Estimator. MPE problem is generally ill-
defined unless we impose certain assumptions. In literature,
the irreducible assumption and its variants (Blanchard, Lee,
and Scott 2010; Scott 2015) are proposed to ensure a unique
value of the true mixture proportion wi. Furthermore, Blan-
chard, Lee, and Scott (2010) have observed that the true wi
is identical to the maximum proportion of DiX in DteX when
the irreducible assumption holds.

Based on the observation, we can identify wi by the max-
imum ŵi that makes G′ = (DteX − ŵiDiX)/(1 − ŵi) still a
valid distribution. That is, if the estimated mixture proportion
ŵi is greater than the true one wi, the density function of G′
would go negative, making it an illegal distribution. The prob-
lem here is how to judge whether G′ is a valid distribution?

The above problem can be handled with KME. For simplic-
ity, we rewrite the mixture proportion as λi = 1/(1−wi) and
λ̂i = 1/(1− ŵi), where λi ∈ [1,+∞) is monotonically in-
creasing w.r.t. wi. In such a case, G′ = λ̂iDteX + (1− λ̂i)DiX .
One can define the distance from G′ to a set containing all
valid distributions as

d(λ̂i) = inf
h∈C

∥∥ λ̂iµte + (1− λ̂i)µi︸ ︷︷ ︸
µG′

−h
∥∥
H,



where C = {h ∈ H | h = µQ for some distribution Q} is
the set of KMEs of all valid distributions. If λ̂i ≤ λi, G′ is
a valid distribution, then d(λ̂i) = 0, otherwise d(λ̂i) > 0.
Moreover, the distance function d(λ̂i) is non-decreasing and
convex over [1,+∞). Thus, we can use binary search to
identify λi as the critical value λ̂i making d(λ̂i) > 0. More
illustration of the idea and formal descriptions of the proper-
ties of d(λ̂) with their proofs can be found in Appendix B.

Empirical RKME Estimators. In the deploying phase, we
can approximate d(λ̂i) empirically by

d̂(λ̂i) = inf
h∈Ĉ

∥∥∥λ̂iµ̂te + (1− λ̂i)µ̃i − h
∥∥∥
H
, (12)

where µ̂te is the empirical KME of the testing data and µ̃i is
the RKME for the i-th job. The set Ĉ = {h ∈ H | h =∑Nt

n=1 ank(xn, ·) + bm
∑Mi

m=1 k(zm, ·), for
∑Nt

n=1 an +∑Mi

m=1 bm = 1} contains all empirical KMEs established
over {xn}Nt

n=1 and {zm}Mi
m=1. We can calculate the value of

(d̂(λ̂i))
2 by solving a quadratic program.

The empirical distance d̂(λ̂i) does not enjoy the nice prop-
erties as d(λ̂i), as it could be greater than 0, even when
λ̂i < λi. However, it is still non-decreasing and convex over
[1,+∞) and converges to d(λ̂i) with the growth of Nt and
Mi. We can specify a threshold ν rather than 0 to identify the
true weight. Formally speaking, we can estimate λi by

λ̂Vi = inf{λ̂i : d̂(λ̂i) > ν}. (13)

Besides, since d̂(λ̂i) is convex over [1,+∞), its gradient
is non-decreasing over [1,+∞) and thus thresholding the
gradient is also a viable strategy. We can estimate λi by

λ̂Gi = inf{λ̂i : ∃g′ ∈ ∂d̂(λ̂i), g
′ ≥ ν}. (14)

Empirical studies show that λ̂Gi achieves better performance.
Thus, we use it for our mixture proportion estimator. After
estimating λ̂Gi , we calculate ŵGi = (λ̂Gi − 1)/λ̂Gi .

4.4 A Summary of Deploying Approach

Finally, we summarize our deploying approach, where we
first estimate the mixture proportion wi by the estimator
ŵGi and calculate ŵGu = 1 −

∑C
i=1 ŵ

G
i , followed by the

selector training via (10). Then, we use the selector g̃(x) =
arg mini∈I g̃i(x) to identify samples from the unseen job
and assign the rest to proper models for predicting. Detailed
implementations of the MPE estimator (Algorithm 1) and
selector training (Algorithm 2) are provided in Appendix A.

5 Theoretical Analysis
In this section, we theoretically justify our method by provid-
ing the excess risk bound for the selector and convergence
analysis for the RKME based MPE estimator.

5.1 Excess Risk Bound for Job Selector
We first provide the excess risk bound for our selector trained
with the true mixture proportions. The convergence analysis
for the MPE estimator is shown in the next subsection. For
simplicity, we further assume Mi = M and Ni = N for all
i ∈ [C] and the size of mimic data |D̃i| is greater than M as
we can generate an arbitrary number of mimic data.

Theorem 1. Suppose k(x,x) ≤ 1 holds for all x ∈ X and
binary loss ψ satisfies Bψ ≥ 0 and is L-Lipschitz.2 Then,

RΨ(g̃)−RΨ(g∗) ≤ O
(
(C + 1)(N−

1
2 +N

− 1
2

t ) +M−
1
2

)
holds for all g1, . . . , gC , gu ∈ G. The optimal classifier g∗ =
arg ming1,...,gC ,gu∈G RΨ(g) minimizes the expected risk RΨ

over the hypothesis space G.

Theorem 1 essentially states that despite the inaccessibility
of the raw data and the existence of the unseen job, our job
selector converges to the optimal one trained over the testing
distribution. We defer the detailed proof to Appendix B.

Remark 1. The proof of Theorem 1 is established on the cor-
nerstone that RKME µ̃i converges to the empircal KME µ̂i in
the rate ofO(1/

√
M). We note that this rate can be improved

to O(e−M ) when the RKHS is finite-dimensional (proofs are
shown in Appendix B). This rate indicates that with a tiny
reduced set M = O(logN), our selector g̃ converges to the
optimal one g∗ in the rate of O((C + 1)(1/

√
N + 1/

√
Nt)),

which is the standard rate for the empirical risk minimiza-
tion method trained with raw data, which further validates
the effectiveness of the RKME specification. Although in
the infinite-dimensional setting, the current theory only sup-
ports the O(1/

√
M) rate, our experiments show that a tiny

reduce set (M = 10 vs N = 2500) is sufficient to support
satisfactory empirical performance.

5.2 Convergence Analysis for MPE Estimator
As we have mentioned, the MPE problem is not well defined
unless we introduce certain assumptions. For analyzing the
RKME based estimator, we require the separability assump-
tion introduced by Ramaswamy, Scott, and Tewari (2016).

Assumption 2 (separability assumption). A kernel k and
distributions G, H satisfy the separability condition with
margin α > 0 and tolerance β, if ∃h ∈ H, ‖h‖H < 1 and

Ex∼G[h(x)] ≤ inf
x
h(x) + β ≤ Ex∼H [h(x)]− α.

The separability assumption states that H and G are sepa-
rated enough evaluated by a function space, which is a natural
extension of the assumption supp(H) * supp(G) to the func-
tion space setting (Ramaswamy, Scott, and Tewari 2016). In
our case,H = DiX andG = D̄iX := (DteX−wiDiX)/(1−wi)
is the rest distribution inDteX apart fromDiX . The two distribu-
tions are separable in applications as they are the marginal dis-
tribution for different jobs. We provide the convergence rate
for estimator λ̂Gi , whose proofs are deferred to Appendix B.

2Common surrogate loss functions satisfy these conditions, such
as logistic loss, exp loss and square loss.
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Theorem 2. Suppose k(x,x) ≤ 1 holds for all x ∈ X . Let
kernel k and distribution DiX , D̄iX satisfy the separability
condition with margin α > 0 and tolerance β. Let ν ∈[
α

4λi
, 3α

4λi

]
,
√

min{N,M,Nt} ≥
192
√

log(1/δ)

α/λi−ν and µ̃i ∈ Ĉ.
With probability at least 1− 4δ, we have

λi − λ̂Gi ≤ O((min{N,M,Nt})−1/2)

λ̂Gi − λi ≤ 8βλi/α+O((min{N,M,Nt})−1/2).

The convergence rate of MPE estimator is similar with
the excess risk bound of job selector, whose dependence
on M can also be improved to O(e−M ) when H is finite-
dimensional. Theorem 1 together with Theorem 2 show that
our approach can provably train a well-performed job selector,
even when the unseen job exists and raw data are unavailable.

6 Related Work and Discussion
In this section, we discuss related works from two aspects.
Related Topics. Domain adaptation (Ben-David et al. 2006)
and transfer learning (Pan and Yang 2010) aim to adapt
source data to help the training on target data. The prob-
lem is that the raw source data are available when training
the target model, which is not applicable in the learnware
scenario. More relevant topics to ours are learning from aux-
iliary classifiers (Duan et al. 2009) or hypothesis transfer
learning (Kuzborskij and Orabona 2013, 2017; Zhao, Cai,
and Zhou 2020), where researchers attempt to exploit pre-
trained models for handling learners’ current jobs. Their
assumption is that the given pre-trained models are always
helpful for the current job, which exhibits striking difference
from our problem as helpful models could be only a few
even non-existent in the learnware market. Multi-party learn-
ing (Pathak, Rane, and Raj 2010; Wu, Liu, and Zhou 2019)
also considers uniting local data to solve the same/similar job
in privacy-preserving ways. But they assume that every local
data is relevant to the user’s current job, which is not the case
in learnware as the reusability is one of its main concerns.

There are recent efforts devoted to the issue of reusability.
Specifically, Wu et al. (2020) make the first attempt to reuse
a pool of model with the RKME specification. Later, Ding
and Zhou (2020) use outlier detectors as the specification and
develop a boosting-based approach to deploy models. The
difference between our work and previous studies is that we
consider the existence of the unseen job, the identification of
which requires new deploying algorithms.

Testing data

(a) Current job

Unseen
+/

/

(b) Predictions

Figure 3: Deploying phase

Related Techniques. The main technical stuffs, mixture pro-
portion estimation (Jain et al. 2016; du Plessis, Niu, and
Sugiyama 2017; Bekker and Davis 2018) and risk rewriting
technique (du Plessis, Niu, and Sugiyama 2014, 2015; Zhang
et al. 2020), have been developed in the research field of
weakly supervised learning. However, all the existing meth-
ods rely on the raw data, which are not applicable in the learn-
ware scenario. Our contribution is to modify and integrate
them with the RKME specification, where we theoretically
justify the compatibility of our modification.

7 Experiments
This section examines the efficacy of our method, where we
compare our method with contenders in various scenarios. In
the following, we first illustrate our method by a toy example,
followed by the comparisons on benchmark datasets.

7.1 Toy Example
Following the empirical studies of Wu et al. (2020), we first
illustrate the RKME based learnware by a toy classification
problem. There are two stages of the toy experiment.
Uploading phase. Figure 2 illustrates the uploading phase.
There are three developers in the market, whose local datasets
are denoted by “ ”, “ ”, “ ”. Each local dataset contains
160 samples and is generated from mixture of different Gaus-
sian distributions. Labels of each dataset are decided by a
circle where yellow ones are positive (“+”) while blue ones
are negative (“−”). Based on their training data, developers
construct learnwares individually, where linear models are
trained over the local datasets and RKMEs are built. The
reduced set size is M = 5, equaling bln 160c and is quite
fewer comparing with the raw training data.
Deploying phase. Figure 3 illustrates the deploying phase,
where the current job is taken as a mixture of uploaded
jobs and an unseen part (denoted by “ ”). The true mix-
ture proportion of the uploaded jobs is [0.5, 0.2, 0, 0.3] for
“ ”, “ ”, “ ” and “ ”. By exploiting the unlabeled test-
ing data and RKMEs of the uploaded jobs, the estimated
proportions returned by our RKME based MPE estimator
are [0.506, 0.182, 0.013, 0.299], which is close to the ground
truth. Figure 3(b) shows the the decision boundary of the
selector, which essentially identifies the unseen job samples
and assign the rest to proper models.



Datasets Job number Instance-recurrent assumption (2) Unseen-job assumption (3)

RKME-basic Ours RKME-OCSVM RKME-iForest Ours Ours-oracle Oracle

CIFAR-100
2 75.90 ± 5.41 79.28 ± 4.84 62.81 ± 6.13 58.55 ± 4.74 90.32 ± 2.02 90.39 ± 2.22 93.55 ± 1.52
5 75.43 ± 3.92 72.59 ± 4.80 49.80 ± 2.73 37.85 ± 2.64 76.04 ± 4.84 79.15 ± 2.01 87.88 ± 2.77
10 75.95 ± 2.34 73.28 ± 2.10 44.70 ± 2.02 29.18 ± 2.97 72.42 ± 3.81 74.49 ± 2.71 86.43 ± 1.95

Newsgroup20
2 85.75 ± 7.59 84.31 ± 8.34 56.44 ± 7.03 59.01 ± 5.46 79.91 ± 9.98 88.73 ± 7.48 93.64 ± 4.94
3 88.18 ± 6.69 86.70 ± 6.79 52.93 ± 3.81 48.58 ± 3.59 75.56 ± 6.39 83.43 ± 4.21 90.55 ± 3.61
4 87.10 ± 6.38 83.32 ± 6.89 48.94 ± 2.69 43.75 ± 3.53 71.19 ± 6.15 80.90 ± 2.50 89.88 ± 2.09

ELT Character
2 87.47 ± 5.04 88.15 ± 4.26 31.56 ± 7.56 38.15 ± 12.8 91.85 ± 2.63 93.14 ± 2.06 95.67 ± 2.74
3 87.09 ± 2.35 84.15 ± 3.28 37.79 ± 9.05 37.27 ± 10.0 85.52 ± 5.30 88.85 ± 4.40 95.49 ± 1.61
4 86.23 ± 2.63 81.45 ± 2.93 44.75 ± 4.59 39.49 ± 6.55 76.01 ± 5.53 84.61 ± 2.97 94.10 ± 1.67

Table 1: Accuracy on true labels. The best feasible method is emphasized in bold (paired t-tests at 5% significance level).

7.2 Benchmark Datasets
We evaluate our method on benchmark datasets to show its ef-
fectiveness on reusing models. As the reusability of a pool of
models is a new problem, we first compare with the baseline.
• RKME-basic (Wu et al. 2020) exploits the RKME to

reuse the model pool under the instance-recurrent assump-
tion (2), where the existence of unseen job is not consid-
ered. We take this method as a baseline.

To evaluate how well our method can perform, we compare
with two skylines, which is not feasible in real applications.
• Oracle knows the job each sample belongs to. It enjoys

the best performance that the pool of models can achieve.
• Ours-oracle uses our method to train the selector with

true {wi}Ci=1, served a skyline for the MPE estimator.
Meanwhile, since RKME-basic method cannot identify the
unseen job, we equip it with novelty detectors, which can be
seen as another specification provided by the developer.
• RKME-OCSVM equips RKME-basic with the one-class

SVM (Schölkopf et al. 2001), where an OCSVM is pro-
vided for each uploaded job as an additional specification.
When a sample is rejected by all one-class SVMs of the
uploaded jobs, it is predicted as from the unseen job. The
rest samples are predicted with RKME-basic.

• RKME-iForest equips RKME-basic with iFor-
est (Liu, Ting, and Zhou 2008) to predict the unseen job.
For all RKHS based methods, we exploit the Gaussian

kernel k(x,y) = exp(−γ‖x − y‖22) with γ = 0.01. The
reduced set size is M = 10 which is very tiny size. As
for our method, we set ν = 0.25 for the MPE estimator and
choose the square loss ψ(z) = (1−z)2/4 for the job selector.
Datasets. The evaluation is conducted on three widely used
benchmark datasets: CIFAR-100 (Krizhevsky 2009), News-
group20 (Joachims 1997) and an ETL character dataset.
CIFAR-100 has 100 classes and are naturally divided into
20 parts and each has 5 classes. We simulate the learnware
scenario by taking each part as a job, which contains 2500
training instances. Newsgroup20 has a similar configuration,
where there are 5 jobs and each has 2000 instances. The char-
acter dataset consists of characters from 6 different scripts.
Each script is seen as a job and has at least 6528 instances.
Configuration. To evaluate the method, we compare it
with contenders in various scenarios. First, we compare to
RKME-basic under the instance-recurrent assumption (2),
where no unseen job appears. RKME-basic is specifically
designed for this scenario. The goal of the comparison is to

evaluate the safety of our method even if it always assumes
the existence of potential unseen jobs. Next, we conduct ex-
periments with emerging unseen jobs, where only parts of
local jobs are uploaded, and there is always one unseen job.
In both scenarios, the current job is stimulated by randomly
mixing a different number of local jobs with equal mixture
proportions. All experiments are repeated 10 times.

More detailed descriptions for contenders, datasets, and
experimental configurations can be founded in Appendix C.

Results. Table 1 presents the prediction accuracy over the
true label of the testing data, where the unseen job is as-
sumed to have a unique class. We provide more evaluation
on other measures in Appendix C. As shown in the compari-
son under the instance-recurrent assumption (2), our method
achieves comparable performance with RKME-basic in var-
ious numbers of mixed jobs, which shows that our method is
safe to use when there is no unseen job. The comparison un-
der the unseen-job assumption (3) validates the superiority of
our method. The novel detectors do not achieve the expected
performance. The reason might be that it is solely trained
over the local dataset, whose predictions on other jobs might
not be accurate. On the contrary, by exploiting the unlabeled
testing data, our method can align binary classifiers in the
OVR scheme to select the job a testing sample comes from.

The comparison between Ours and Ours-oracle
shows the MPE estimator is accurate, as Ours-oracle
is trained with the true {wi}Ci=1, while our method achieves
comparable performance in most cases. The comparison be-
tween Ours-oracle and Oracle further validates our
job selector’s efficacy, as Ours-oracle trains the selector
with only a tiny reduced set size M = 10 while Oracle is
assumed to know each sample’s ground truth job.

8 Conclusion
This paper attempts to address the challenge of how to reuse
learnwares when the user’s job involves unseen parts not cov-
ered by the current learnware market. Based on the recently
proposed RKME specification and advances in weakly su-
pervised learning, we design a provably effective approach
that can identify the unseen job samples while assigning the
rest to proper models. Empirical evaluation validates that our
approach can be safely applied no matter whether there are
unseen jobs or not. An interesting future issue is to consider
the labeling cost budget.
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